From 8d2169e8d6b8a91413df33bc402e0f602ceaabcc Mon Sep 17 00:00:00 2001 From: David Gibson Date: Fri, 27 Apr 2007 11:53:52 +1000 Subject: [PATCH] [POWERPC] Prepare for splitting up mmu.h by MMU type Currently asm-powerpc/mmu.h has definitions for the 64-bit hash based MMU. If CONFIG_PPC64 is not set, it instead includes asm-ppc/mmu.h which contains a particularly horrible mess of #ifdefs giving the definitions for all the various 32-bit MMUs. It would be nice to have the low level definitions for each MMU type neatly in their own separate files. It would also be good to wean arch/powerpc off dependence on the old asm-ppc/mmu.h. This patch makes a start on such a cleanup by moving the definitions for the 64-bit hash MMU to their own file, asm-powerpc/mmu_hash64.h. Definitions for the other MMUs still all come from asm-ppc/mmu.h, however each MMU type can now be one-by-one moved over to their own file, in the process cleaning them up stripping them of cruft no longer necessary in arch/powerpc. Signed-off-by: David Gibson Signed-off-by: Paul Mackerras --- include/asm-powerpc/mmu-hash64.h | 400 ++++++++++++++++++++++++++++++ include/asm-powerpc/mmu.h | 406 +------------------------------ 2 files changed, 406 insertions(+), 400 deletions(-) create mode 100644 include/asm-powerpc/mmu-hash64.h diff --git a/include/asm-powerpc/mmu-hash64.h b/include/asm-powerpc/mmu-hash64.h new file mode 100644 index 00000000000..6739457d8bc --- /dev/null +++ b/include/asm-powerpc/mmu-hash64.h @@ -0,0 +1,400 @@ +#ifndef _ASM_POWERPC_MMU_HASH64_H_ +#define _ASM_POWERPC_MMU_HASH64_H_ +/* + * PowerPC64 memory management structures + * + * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> + * PPC64 rework. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +#include +#include + +/* + * Segment table + */ + +#define STE_ESID_V 0x80 +#define STE_ESID_KS 0x20 +#define STE_ESID_KP 0x10 +#define STE_ESID_N 0x08 + +#define STE_VSID_SHIFT 12 + +/* Location of cpu0's segment table */ +#define STAB0_PAGE 0x6 +#define STAB0_OFFSET (STAB0_PAGE << 12) +#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START) + +#ifndef __ASSEMBLY__ +extern char initial_stab[]; +#endif /* ! __ASSEMBLY */ + +/* + * SLB + */ + +#define SLB_NUM_BOLTED 3 +#define SLB_CACHE_ENTRIES 8 + +/* Bits in the SLB ESID word */ +#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ + +/* Bits in the SLB VSID word */ +#define SLB_VSID_SHIFT 12 +#define SLB_VSID_B ASM_CONST(0xc000000000000000) +#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) +#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) +#define SLB_VSID_KS ASM_CONST(0x0000000000000800) +#define SLB_VSID_KP ASM_CONST(0x0000000000000400) +#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ +#define SLB_VSID_L ASM_CONST(0x0000000000000100) +#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ +#define SLB_VSID_LP ASM_CONST(0x0000000000000030) +#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) +#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) +#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) +#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) +#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) + +#define SLB_VSID_KERNEL (SLB_VSID_KP) +#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) + +#define SLBIE_C (0x08000000) + +/* + * Hash table + */ + +#define HPTES_PER_GROUP 8 + +#define HPTE_V_AVPN_SHIFT 7 +#define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80) +#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) +#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN)) +#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) +#define HPTE_V_LOCK ASM_CONST(0x0000000000000008) +#define HPTE_V_LARGE ASM_CONST(0x0000000000000004) +#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) +#define HPTE_V_VALID ASM_CONST(0x0000000000000001) + +#define HPTE_R_PP0 ASM_CONST(0x8000000000000000) +#define HPTE_R_TS ASM_CONST(0x4000000000000000) +#define HPTE_R_RPN_SHIFT 12 +#define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000) +#define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff) +#define HPTE_R_PP ASM_CONST(0x0000000000000003) +#define HPTE_R_N ASM_CONST(0x0000000000000004) +#define HPTE_R_C ASM_CONST(0x0000000000000080) +#define HPTE_R_R ASM_CONST(0x0000000000000100) + +/* Values for PP (assumes Ks=0, Kp=1) */ +/* pp0 will always be 0 for linux */ +#define PP_RWXX 0 /* Supervisor read/write, User none */ +#define PP_RWRX 1 /* Supervisor read/write, User read */ +#define PP_RWRW 2 /* Supervisor read/write, User read/write */ +#define PP_RXRX 3 /* Supervisor read, User read */ + +#ifndef __ASSEMBLY__ + +typedef struct { + unsigned long v; + unsigned long r; +} hpte_t; + +extern hpte_t *htab_address; +extern unsigned long htab_size_bytes; +extern unsigned long htab_hash_mask; + +/* + * Page size definition + * + * shift : is the "PAGE_SHIFT" value for that page size + * sllp : is a bit mask with the value of SLB L || LP to be or'ed + * directly to a slbmte "vsid" value + * penc : is the HPTE encoding mask for the "LP" field: + * + */ +struct mmu_psize_def +{ + unsigned int shift; /* number of bits */ + unsigned int penc; /* HPTE encoding */ + unsigned int tlbiel; /* tlbiel supported for that page size */ + unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */ + unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */ +}; + +#endif /* __ASSEMBLY__ */ + +/* + * The kernel use the constants below to index in the page sizes array. + * The use of fixed constants for this purpose is better for performances + * of the low level hash refill handlers. + * + * A non supported page size has a "shift" field set to 0 + * + * Any new page size being implemented can get a new entry in here. Whether + * the kernel will use it or not is a different matter though. The actual page + * size used by hugetlbfs is not defined here and may be made variable + */ + +#define MMU_PAGE_4K 0 /* 4K */ +#define MMU_PAGE_64K 1 /* 64K */ +#define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */ +#define MMU_PAGE_1M 3 /* 1M */ +#define MMU_PAGE_16M 4 /* 16M */ +#define MMU_PAGE_16G 5 /* 16G */ +#define MMU_PAGE_COUNT 6 + +#ifndef __ASSEMBLY__ + +/* + * The current system page sizes + */ +extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; +extern int mmu_linear_psize; +extern int mmu_virtual_psize; +extern int mmu_vmalloc_psize; +extern int mmu_io_psize; + +/* + * If the processor supports 64k normal pages but not 64k cache + * inhibited pages, we have to be prepared to switch processes + * to use 4k pages when they create cache-inhibited mappings. + * If this is the case, mmu_ci_restrictions will be set to 1. + */ +extern int mmu_ci_restrictions; + +#ifdef CONFIG_HUGETLB_PAGE +/* + * The page size index of the huge pages for use by hugetlbfs + */ +extern int mmu_huge_psize; + +#endif /* CONFIG_HUGETLB_PAGE */ + +/* + * This function sets the AVPN and L fields of the HPTE appropriately + * for the page size + */ +static inline unsigned long hpte_encode_v(unsigned long va, int psize) +{ + unsigned long v = + v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm); + v <<= HPTE_V_AVPN_SHIFT; + if (psize != MMU_PAGE_4K) + v |= HPTE_V_LARGE; + return v; +} + +/* + * This function sets the ARPN, and LP fields of the HPTE appropriately + * for the page size. We assume the pa is already "clean" that is properly + * aligned for the requested page size + */ +static inline unsigned long hpte_encode_r(unsigned long pa, int psize) +{ + unsigned long r; + + /* A 4K page needs no special encoding */ + if (psize == MMU_PAGE_4K) + return pa & HPTE_R_RPN; + else { + unsigned int penc = mmu_psize_defs[psize].penc; + unsigned int shift = mmu_psize_defs[psize].shift; + return (pa & ~((1ul << shift) - 1)) | (penc << 12); + } + return r; +} + +/* + * This hashes a virtual address for a 256Mb segment only for now + */ + +static inline unsigned long hpt_hash(unsigned long va, unsigned int shift) +{ + return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift); +} + +extern int __hash_page_4K(unsigned long ea, unsigned long access, + unsigned long vsid, pte_t *ptep, unsigned long trap, + unsigned int local); +extern int __hash_page_64K(unsigned long ea, unsigned long access, + unsigned long vsid, pte_t *ptep, unsigned long trap, + unsigned int local); +struct mm_struct; +extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); +extern int hash_huge_page(struct mm_struct *mm, unsigned long access, + unsigned long ea, unsigned long vsid, int local, + unsigned long trap); + +extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, + unsigned long pstart, unsigned long mode, + int psize); + +extern void htab_initialize(void); +extern void htab_initialize_secondary(void); +extern void hpte_init_native(void); +extern void hpte_init_lpar(void); +extern void hpte_init_iSeries(void); +extern void hpte_init_beat(void); + +extern void stabs_alloc(void); +extern void slb_initialize(void); +extern void slb_flush_and_rebolt(void); +extern void stab_initialize(unsigned long stab); + +#endif /* __ASSEMBLY__ */ + +/* + * VSID allocation + * + * We first generate a 36-bit "proto-VSID". For kernel addresses this + * is equal to the ESID, for user addresses it is: + * (context << 15) | (esid & 0x7fff) + * + * The two forms are distinguishable because the top bit is 0 for user + * addresses, whereas the top two bits are 1 for kernel addresses. + * Proto-VSIDs with the top two bits equal to 0b10 are reserved for + * now. + * + * The proto-VSIDs are then scrambled into real VSIDs with the + * multiplicative hash: + * + * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS + * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7 + * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF + * + * This scramble is only well defined for proto-VSIDs below + * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are + * reserved. VSID_MULTIPLIER is prime, so in particular it is + * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. + * Because the modulus is 2^n-1 we can compute it efficiently without + * a divide or extra multiply (see below). + * + * This scheme has several advantages over older methods: + * + * - We have VSIDs allocated for every kernel address + * (i.e. everything above 0xC000000000000000), except the very top + * segment, which simplifies several things. + * + * - We allow for 15 significant bits of ESID and 20 bits of + * context for user addresses. i.e. 8T (43 bits) of address space for + * up to 1M contexts (although the page table structure and context + * allocation will need changes to take advantage of this). + * + * - The scramble function gives robust scattering in the hash + * table (at least based on some initial results). The previous + * method was more susceptible to pathological cases giving excessive + * hash collisions. + */ +/* + * WARNING - If you change these you must make sure the asm + * implementations in slb_allocate (slb_low.S), do_stab_bolted + * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly. + * + * You'll also need to change the precomputed VSID values in head.S + * which are used by the iSeries firmware. + */ + +#define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */ +#define VSID_BITS 36 +#define VSID_MODULUS ((1UL<= \ + * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \ + * the bit clear, r3 already has the answer we want, if it \ + * doesn't, the answer is the low 36 bits of r3+1. So in all \ + * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ + addi rx,rt,1; \ + srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \ + add rt,rt,rx + + +#ifndef __ASSEMBLY__ + +typedef unsigned long mm_context_id_t; + +typedef struct { + mm_context_id_t id; + u16 user_psize; /* page size index */ + u16 sllp; /* SLB entry page size encoding */ +#ifdef CONFIG_HUGETLB_PAGE + u16 low_htlb_areas, high_htlb_areas; +#endif + unsigned long vdso_base; +} mm_context_t; + + +static inline unsigned long vsid_scramble(unsigned long protovsid) +{ +#if 0 + /* The code below is equivalent to this function for arguments + * < 2^VSID_BITS, which is all this should ever be called + * with. However gcc is not clever enough to compute the + * modulus (2^n-1) without a second multiply. */ + return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS); +#else /* 1 */ + unsigned long x; + + x = protovsid * VSID_MULTIPLIER; + x = (x >> VSID_BITS) + (x & VSID_MODULUS); + return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS; +#endif /* 1 */ +} + +/* This is only valid for addresses >= KERNELBASE */ +static inline unsigned long get_kernel_vsid(unsigned long ea) +{ + return vsid_scramble(ea >> SID_SHIFT); +} + +/* This is only valid for user addresses (which are below 2^41) */ +static inline unsigned long get_vsid(unsigned long context, unsigned long ea) +{ + return vsid_scramble((context << USER_ESID_BITS) + | (ea >> SID_SHIFT)); +} + +#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS) +#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea)) + +/* Physical address used by some IO functions */ +typedef unsigned long phys_addr_t; + +#endif /* __ASSEMBLY__ */ + +#endif /* _ASM_POWERPC_MMU_HASH64_H_ */ diff --git a/include/asm-powerpc/mmu.h b/include/asm-powerpc/mmu.h index e22fd881150..06b3e6d336c 100644 --- a/include/asm-powerpc/mmu.h +++ b/include/asm-powerpc/mmu.h @@ -2,408 +2,14 @@ #define _ASM_POWERPC_MMU_H_ #ifdef __KERNEL__ -#ifndef CONFIG_PPC64 -#include +#ifdef CONFIG_PPC64 +/* 64-bit classic hash table MMU */ +# include #else - -/* - * PowerPC memory management structures - * - * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> - * PPC64 rework. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version - * 2 of the License, or (at your option) any later version. - */ - -#include -#include - -/* - * Segment table - */ - -#define STE_ESID_V 0x80 -#define STE_ESID_KS 0x20 -#define STE_ESID_KP 0x10 -#define STE_ESID_N 0x08 - -#define STE_VSID_SHIFT 12 - -/* Location of cpu0's segment table */ -#define STAB0_PAGE 0x6 -#define STAB0_OFFSET (STAB0_PAGE << 12) -#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START) - -#ifndef __ASSEMBLY__ -extern char initial_stab[]; -#endif /* ! __ASSEMBLY */ - -/* - * SLB - */ - -#define SLB_NUM_BOLTED 3 -#define SLB_CACHE_ENTRIES 8 - -/* Bits in the SLB ESID word */ -#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ - -/* Bits in the SLB VSID word */ -#define SLB_VSID_SHIFT 12 -#define SLB_VSID_B ASM_CONST(0xc000000000000000) -#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) -#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) -#define SLB_VSID_KS ASM_CONST(0x0000000000000800) -#define SLB_VSID_KP ASM_CONST(0x0000000000000400) -#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ -#define SLB_VSID_L ASM_CONST(0x0000000000000100) -#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ -#define SLB_VSID_LP ASM_CONST(0x0000000000000030) -#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) -#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) -#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) -#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) -#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) - -#define SLB_VSID_KERNEL (SLB_VSID_KP) -#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) - -#define SLBIE_C (0x08000000) - -/* - * Hash table - */ - -#define HPTES_PER_GROUP 8 - -#define HPTE_V_AVPN_SHIFT 7 -#define HPTE_V_AVPN ASM_CONST(0xffffffffffffff80) -#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) -#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN)) -#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) -#define HPTE_V_LOCK ASM_CONST(0x0000000000000008) -#define HPTE_V_LARGE ASM_CONST(0x0000000000000004) -#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) -#define HPTE_V_VALID ASM_CONST(0x0000000000000001) - -#define HPTE_R_PP0 ASM_CONST(0x8000000000000000) -#define HPTE_R_TS ASM_CONST(0x4000000000000000) -#define HPTE_R_RPN_SHIFT 12 -#define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000) -#define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff) -#define HPTE_R_PP ASM_CONST(0x0000000000000003) -#define HPTE_R_N ASM_CONST(0x0000000000000004) -#define HPTE_R_C ASM_CONST(0x0000000000000080) -#define HPTE_R_R ASM_CONST(0x0000000000000100) - -/* Values for PP (assumes Ks=0, Kp=1) */ -/* pp0 will always be 0 for linux */ -#define PP_RWXX 0 /* Supervisor read/write, User none */ -#define PP_RWRX 1 /* Supervisor read/write, User read */ -#define PP_RWRW 2 /* Supervisor read/write, User read/write */ -#define PP_RXRX 3 /* Supervisor read, User read */ - -#ifndef __ASSEMBLY__ - -typedef struct { - unsigned long v; - unsigned long r; -} hpte_t; - -extern hpte_t *htab_address; -extern unsigned long htab_size_bytes; -extern unsigned long htab_hash_mask; - -/* - * Page size definition - * - * shift : is the "PAGE_SHIFT" value for that page size - * sllp : is a bit mask with the value of SLB L || LP to be or'ed - * directly to a slbmte "vsid" value - * penc : is the HPTE encoding mask for the "LP" field: - * - */ -struct mmu_psize_def -{ - unsigned int shift; /* number of bits */ - unsigned int penc; /* HPTE encoding */ - unsigned int tlbiel; /* tlbiel supported for that page size */ - unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */ - unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */ -}; - -#endif /* __ASSEMBLY__ */ - -/* - * The kernel use the constants below to index in the page sizes array. - * The use of fixed constants for this purpose is better for performances - * of the low level hash refill handlers. - * - * A non supported page size has a "shift" field set to 0 - * - * Any new page size being implemented can get a new entry in here. Whether - * the kernel will use it or not is a different matter though. The actual page - * size used by hugetlbfs is not defined here and may be made variable - */ - -#define MMU_PAGE_4K 0 /* 4K */ -#define MMU_PAGE_64K 1 /* 64K */ -#define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */ -#define MMU_PAGE_1M 3 /* 1M */ -#define MMU_PAGE_16M 4 /* 16M */ -#define MMU_PAGE_16G 5 /* 16G */ -#define MMU_PAGE_COUNT 6 - -#ifndef __ASSEMBLY__ - -/* - * The current system page sizes - */ -extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; -extern int mmu_linear_psize; -extern int mmu_virtual_psize; -extern int mmu_vmalloc_psize; -extern int mmu_io_psize; - -/* - * If the processor supports 64k normal pages but not 64k cache - * inhibited pages, we have to be prepared to switch processes - * to use 4k pages when they create cache-inhibited mappings. - * If this is the case, mmu_ci_restrictions will be set to 1. - */ -extern int mmu_ci_restrictions; - -#ifdef CONFIG_HUGETLB_PAGE -/* - * The page size index of the huge pages for use by hugetlbfs - */ -extern int mmu_huge_psize; - -#endif /* CONFIG_HUGETLB_PAGE */ - -/* - * This function sets the AVPN and L fields of the HPTE appropriately - * for the page size - */ -static inline unsigned long hpte_encode_v(unsigned long va, int psize) -{ - unsigned long v = - v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm); - v <<= HPTE_V_AVPN_SHIFT; - if (psize != MMU_PAGE_4K) - v |= HPTE_V_LARGE; - return v; -} - -/* - * This function sets the ARPN, and LP fields of the HPTE appropriately - * for the page size. We assume the pa is already "clean" that is properly - * aligned for the requested page size - */ -static inline unsigned long hpte_encode_r(unsigned long pa, int psize) -{ - unsigned long r; - - /* A 4K page needs no special encoding */ - if (psize == MMU_PAGE_4K) - return pa & HPTE_R_RPN; - else { - unsigned int penc = mmu_psize_defs[psize].penc; - unsigned int shift = mmu_psize_defs[psize].shift; - return (pa & ~((1ul << shift) - 1)) | (penc << 12); - } - return r; -} - -/* - * This hashes a virtual address for a 256Mb segment only for now - */ - -static inline unsigned long hpt_hash(unsigned long va, unsigned int shift) -{ - return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift); -} - -extern int __hash_page_4K(unsigned long ea, unsigned long access, - unsigned long vsid, pte_t *ptep, unsigned long trap, - unsigned int local); -extern int __hash_page_64K(unsigned long ea, unsigned long access, - unsigned long vsid, pte_t *ptep, unsigned long trap, - unsigned int local); -struct mm_struct; -extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); -extern int hash_huge_page(struct mm_struct *mm, unsigned long access, - unsigned long ea, unsigned long vsid, int local, - unsigned long trap); - -extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, - unsigned long pstart, unsigned long mode, - int psize); - -extern void htab_initialize(void); -extern void htab_initialize_secondary(void); -extern void hpte_init_native(void); -extern void hpte_init_lpar(void); -extern void hpte_init_iSeries(void); -extern void hpte_init_beat(void); - -extern void stabs_alloc(void); -extern void slb_initialize(void); -extern void slb_flush_and_rebolt(void); -extern void stab_initialize(unsigned long stab); - -#endif /* __ASSEMBLY__ */ - -/* - * VSID allocation - * - * We first generate a 36-bit "proto-VSID". For kernel addresses this - * is equal to the ESID, for user addresses it is: - * (context << 15) | (esid & 0x7fff) - * - * The two forms are distinguishable because the top bit is 0 for user - * addresses, whereas the top two bits are 1 for kernel addresses. - * Proto-VSIDs with the top two bits equal to 0b10 are reserved for - * now. - * - * The proto-VSIDs are then scrambled into real VSIDs with the - * multiplicative hash: - * - * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS - * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7 - * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF - * - * This scramble is only well defined for proto-VSIDs below - * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are - * reserved. VSID_MULTIPLIER is prime, so in particular it is - * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. - * Because the modulus is 2^n-1 we can compute it efficiently without - * a divide or extra multiply (see below). - * - * This scheme has several advantages over older methods: - * - * - We have VSIDs allocated for every kernel address - * (i.e. everything above 0xC000000000000000), except the very top - * segment, which simplifies several things. - * - * - We allow for 15 significant bits of ESID and 20 bits of - * context for user addresses. i.e. 8T (43 bits) of address space for - * up to 1M contexts (although the page table structure and context - * allocation will need changes to take advantage of this). - * - * - The scramble function gives robust scattering in the hash - * table (at least based on some initial results). The previous - * method was more susceptible to pathological cases giving excessive - * hash collisions. - */ -/* - * WARNING - If you change these you must make sure the asm - * implementations in slb_allocate (slb_low.S), do_stab_bolted - * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly. - * - * You'll also need to change the precomputed VSID values in head.S - * which are used by the iSeries firmware. - */ - -#define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */ -#define VSID_BITS 36 -#define VSID_MODULUS ((1UL<= \ - * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \ - * the bit clear, r3 already has the answer we want, if it \ - * doesn't, the answer is the low 36 bits of r3+1. So in all \ - * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ - addi rx,rt,1; \ - srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \ - add rt,rt,rx - - -#ifndef __ASSEMBLY__ - -typedef unsigned long mm_context_id_t; - -typedef struct { - mm_context_id_t id; - u16 user_psize; /* page size index */ - u16 sllp; /* SLB entry page size encoding */ -#ifdef CONFIG_HUGETLB_PAGE - u16 low_htlb_areas, high_htlb_areas; +/* 32-bit. FIXME: split up the 32-bit MMU types, and revise for + * arch/powerpc */ +# include #endif - unsigned long vdso_base; -} mm_context_t; - - -static inline unsigned long vsid_scramble(unsigned long protovsid) -{ -#if 0 - /* The code below is equivalent to this function for arguments - * < 2^VSID_BITS, which is all this should ever be called - * with. However gcc is not clever enough to compute the - * modulus (2^n-1) without a second multiply. */ - return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS); -#else /* 1 */ - unsigned long x; - - x = protovsid * VSID_MULTIPLIER; - x = (x >> VSID_BITS) + (x & VSID_MODULUS); - return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS; -#endif /* 1 */ -} - -/* This is only valid for addresses >= KERNELBASE */ -static inline unsigned long get_kernel_vsid(unsigned long ea) -{ - return vsid_scramble(ea >> SID_SHIFT); -} - -/* This is only valid for user addresses (which are below 2^41) */ -static inline unsigned long get_vsid(unsigned long context, unsigned long ea) -{ - return vsid_scramble((context << USER_ESID_BITS) - | (ea >> SID_SHIFT)); -} - -#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS) -#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea)) - -/* Physical address used by some IO functions */ -typedef unsigned long phys_addr_t; - - -#endif /* __ASSEMBLY */ -#endif /* CONFIG_PPC64 */ #endif /* __KERNEL__ */ #endif /* _ASM_POWERPC_MMU_H_ */ -- 2.41.1