From 62bafda30068c20eb0a9ce90b479ebdd54c0d8a1 Mon Sep 17 00:00:00 2001 From: "teerth@ti.com" Date: Mon, 4 Aug 2008 17:58:07 +0200 Subject: [PATCH] mtd omap2 nand driver: extend to work with omap3 boards Dirk Behme Extend omap2 mtd nand driver to work with ARCH_OMAP3 boards Signed-off-by: Steve Sakoman Signed-off-by: Dirk Behme Acked-by: Koen Kooi Signed-off-by: Tony Lindgren --- drivers/mtd/nand/Kconfig | 6 +- drivers/mtd/nand/omap2.c | 228 ++++++++++++++++++++++++--------------- 2 files changed, 146 insertions(+), 88 deletions(-) diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 3d5e4323a55..2b1021bd3c6 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -70,10 +70,10 @@ config MTD_NAND_AMS_DELTA Support for NAND flash on Amstrad E3 (Delta). config MTD_NAND_OMAP2 - tristate "NAND Flash device on OMAP 2420H4/2430SDP boards" - depends on (ARM && ARCH_OMAP2 && MTD_NAND) + tristate "NAND Flash device on OMAP2 and OMAP3" + depends on ARM && MTD_NAND && (ARCH_OMAP2 || ARCH_OMAP3) help - Support for NAND flash on Texas Instruments 2430SDP/2420H4 platforms. + Support for NAND flash on Texas Instruments OMAP2 and OMAP3 platforms. config MTD_NAND_OMAP tristate "NAND Flash device on OMAP H3/H2/P2 boards" diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c index 85793a3a7b6..b4ce8085f27 100644 --- a/drivers/mtd/nand/omap2.c +++ b/drivers/mtd/nand/omap2.c @@ -111,15 +111,6 @@ static const char *part_probes[] = { "cmdlinepart", NULL }; #endif -static int hw_ecc = 1; - -/* new oob placement block for use with hardware ecc generation */ -static struct nand_ecclayout omap_hw_eccoob = { - .eccbytes = 12, - .eccpos = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, - .oobfree = {{16, 32}, {33, 63} }, -}; - struct omap_nand_info { struct nand_hw_control controller; struct omap_nand_platform_data *pdata; @@ -133,6 +124,13 @@ struct omap_nand_info { void __iomem *gpmc_cs_baseaddr; void __iomem *gpmc_baseaddr; }; + +/* + * omap_nand_wp - This function enable or disable the Write Protect feature on + * NAND device + * @mtd: MTD device structure + * @mode: WP ON/OFF + */ static void omap_nand_wp(struct mtd_info *mtd, int mode) { struct omap_nand_info *info = container_of(mtd, @@ -189,11 +187,11 @@ static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) } /* -* omap_read_buf - read data from NAND controller into buffer -* @mtd: MTD device structure -* @buf: buffer to store date -* @len: number of bytes to read -*/ + * omap_read_buf - read data from NAND controller into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + */ static void omap_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct omap_nand_info *info = container_of(mtd, @@ -207,11 +205,11 @@ static void omap_read_buf(struct mtd_info *mtd, u_char *buf, int len) } /* -* omap_write_buf - write buffer to NAND controller -* @mtd: MTD device structure -* @buf: data buffer -* @len: number of bytes to write -*/ + * omap_write_buf - write buffer to NAND controller + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + */ static void omap_write_buf(struct mtd_info *mtd, const u_char * buf, int len) { struct omap_nand_info *info = container_of(mtd, @@ -250,10 +248,16 @@ static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) return 0; } +#ifdef CONFIG_MTD_NAND_OMAP_HWECC +/* + * omap_hwecc_init-Initialize the Hardware ECC for NAND flash in GPMC controller + * @mtd: MTD device structure + */ static void omap_hwecc_init(struct mtd_info *mtd) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); + register struct nand_chip *chip = mtd->priv; unsigned long val = 0x0; /* Read from ECC Control Register */ @@ -264,16 +268,15 @@ static void omap_hwecc_init(struct mtd_info *mtd) /* Read from ECC Size Config Register */ val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); - /* ECCSIZE1=512 | ECCSIZE0=8bytes | Select eccResultsize[0123] */ - val = ((0x000000FF<<22) | (0x00000003<<12) | (0x0000000F)); + /* ECCSIZE1=512 | Select eccResultsize[0-3] */ + val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F)); __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); - - } /* - * This function will generate true ECC value, which can be used + * gen_true_ecc - This function will generate true ECC value, which can be used * when correcting data read from NAND flash memory core + * @ecc_buf: buffer to store ecc code */ static void gen_true_ecc(u8 *ecc_buf) { @@ -289,8 +292,12 @@ static void gen_true_ecc(u8 *ecc_buf) } /* - * This function compares two ECC's and indicates if there is an error. - * If the error can be corrected it will be corrected to the buffer + * omap_compare_ecc - This function compares two ECC's and indicates if there + * is an error. If the error can be corrected it will be corrected to the + * buffer + * @ecc_data1: ecc code from nand spare area + * @ecc_data2: ecc code from hardware register obtained from hardware ecc + * @page_data: page data */ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ u8 *ecc_data2, /* read from register */ @@ -409,6 +416,14 @@ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ } } +/* + * omap_correct_data - Compares the ecc read from nand spare area with ECC + * registers values and corrects one bit error if it has occured + * @mtd: MTD device structure + * @dat: page data + * @read_ecc: ecc read from nand flash + * @calc_ecc: ecc read from ECC registers + */ static int omap_correct_data(struct mtd_info *mtd, u_char * dat, u_char * read_ecc, u_char * calc_ecc) { @@ -436,65 +451,64 @@ static int omap_correct_data(struct mtd_info *mtd, u_char * dat, } /* -** Generate non-inverted ECC bytes. -** -** Using noninverted ECC can be considered ugly since writing a blank -** page ie. padding will clear the ECC bytes. This is no problem as long -** nobody is trying to write data on the seemingly unused page. -** -** Reading an erased page will produce an ECC mismatch between -** generated and read ECC bytes that has to be dealt with separately. -*/ + * omap_calcuate_ecc - Generate non-inverted ECC bytes. + * Using noninverted ECC can be considered ugly since writing a blank + * page ie. padding will clear the ECC bytes. This is no problem as long + * nobody is trying to write data on the seemingly unused page. Reading + * an erased page will produce an ECC mismatch between generated and read + * ECC bytes that has to be dealt with separately. + * @mtd: MTD device structure + * @dat: The pointer to data on which ecc is computed + * @ecc_code: The ecc_code buffer + */ static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned long val = 0x0; - unsigned long reg, n; - - /* Ex NAND_ECC_HW12_2048 */ - if ((info->nand.ecc.mode == NAND_ECC_HW) && - (info->nand.ecc.size == 2048)) - n = 4; - else - n = 1; + unsigned long reg; /* Start Reading from HW ECC1_Result = 0x200 */ reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT); - while (n--) { - val = __raw_readl(reg); - *ecc_code++ = val; /* P128e, ..., P1e */ - *ecc_code++ = val >> 16; /* P128o, ..., P1o */ - /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ - *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); - reg += 4; - } + val = __raw_readl(reg); + *ecc_code++ = val; /* P128e, ..., P1e */ + *ecc_code++ = val >> 16; /* P128o, ..., P1o */ + /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ + *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); + reg += 4; return 0; -} /* omap_calculate_ecc */ +} +/* + * omap_enable_hwecc - This function enables the hardware ecc functionality + * @mtd: MTD device structure + * @mode: Read/Write mode + */ static void omap_enable_hwecc(struct mtd_info *mtd, int mode) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); + register struct nand_chip *chip = mtd->priv; + unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG); switch (mode) { case NAND_ECC_READ : __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); - /* ECC 16 bit col) | ( CS 0 ) | ECC Enable */ - val = (1 << 7) | (0x0) | (0x1) ; + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); break; case NAND_ECC_READSYN : - __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL); - /* ECC 16 bit col) | ( CS 0 ) | ECC Enable */ - val = (1 << 7) | (0x0) | (0x1) ; + __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL); + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); break; case NAND_ECC_WRITE : __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); - /* ECC 16 bit col) | ( CS 0 ) | ECC Enable */ - val = (1 << 7) | (0x0) | (0x1) ; + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); break; default: DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n", @@ -504,7 +518,38 @@ static void omap_enable_hwecc(struct mtd_info *mtd, int mode) __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG); } +#endif +/* + * omap_wait - Wait function is called during Program and erase + * operations and the way it is called from MTD layer, we should wait + * till the NAND chip is ready after the programming/erase operation + * has completed. + * @mtd: MTD device structure + * @chip: NAND Chip structure + */ +static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + register struct nand_chip *this = mtd->priv; + struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, + mtd); + int status = 0; + + this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr + + GPMC_CS_NAND_COMMAND; + this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; + + while (!(status & 0x40)) { + __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W); + status = __raw_readb(this->IO_ADDR_R); + } + return status; +} + +/* + * omap_dev_ready - calls the platform specific dev_ready function + * @mtd: MTD device structure + */ static int omap_dev_ready(struct mtd_info *mtd) { struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, @@ -534,7 +579,7 @@ static int __devinit omap_nand_probe(struct platform_device *pdev) struct omap_nand_info *info; struct omap_nand_platform_data *pdata; int err; - unsigned long val; + unsigned long val; pdata = pdev->dev.platform_data; @@ -568,15 +613,20 @@ static int __devinit omap_nand_probe(struct platform_device *pdev) } /* Enable RD PIN Monitoring Reg */ - val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1); - val |= WR_RD_PIN_MONITORING; - gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val); + if (pdata->dev_ready) { + val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1); + val |= WR_RD_PIN_MONITORING; + gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val); + } val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7); val &= ~(0xf << 8); val |= (0xc & 0xf) << 8; gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val); + /* NAND write protect off */ + omap_nand_wp(&info->mtd, NAND_WP_OFF); + if (!request_mem_region(info->phys_base, NAND_IO_SIZE, pdev->dev.driver->name)) { err = -EBUSY; @@ -597,29 +647,39 @@ static int __devinit omap_nand_probe(struct platform_device *pdev) info->nand.write_buf = omap_write_buf; info->nand.verify_buf = omap_verify_buf; - info->nand.dev_ready = omap_dev_ready; - info->nand.chip_delay = 0; - - /* Options */ - info->nand.options = NAND_BUSWIDTH_16; - info->nand.options |= NAND_SKIP_BBTSCAN; - - if (hw_ecc) { - /* init HW ECC */ - omap_hwecc_init(&info->mtd); - - info->nand.ecc.calculate = omap_calculate_ecc; - info->nand.ecc.hwctl = omap_enable_hwecc; - info->nand.ecc.correct = omap_correct_data; - info->nand.ecc.mode = NAND_ECC_HW; - info->nand.ecc.bytes = 12; - info->nand.ecc.size = 2048; - info->nand.ecc.layout = &omap_hw_eccoob; - + /* + * If RDY/BSY line is connected to OMAP then use the omap ready funcrtion + * and the generic nand_wait function which reads the status register + * after monitoring the RDY/BSY line.Otherwise use a standard chip delay + * which is slightly more than tR (AC Timing) of the NAND device and read + * status register until you get a failure or success + */ + if (pdata->dev_ready) { + info->nand.dev_ready = omap_dev_ready; + info->nand.chip_delay = 0; } else { - info->nand.ecc.mode = NAND_ECC_SOFT; + info->nand.waitfunc = omap_wait; + info->nand.chip_delay = 50; } + info->nand.options |= NAND_SKIP_BBTSCAN; + if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000) + == 0x1000) + info->nand.options |= NAND_BUSWIDTH_16; + +#ifdef CONFIG_MTD_NAND_OMAP_HWECC + info->nand.ecc.bytes = 3; + info->nand.ecc.size = 512; + info->nand.ecc.calculate = omap_calculate_ecc; + info->nand.ecc.hwctl = omap_enable_hwecc; + info->nand.ecc.correct = omap_correct_data; + info->nand.ecc.mode = NAND_ECC_HW; + + /* init HW ECC */ + omap_hwecc_init(&info->mtd); +#else + info->nand.ecc.mode = NAND_ECC_SOFT; +#endif /* DIP switches on some boards change between 8 and 16 bit * bus widths for flash. Try the other width if the first try fails. @@ -642,8 +702,6 @@ static int __devinit omap_nand_probe(struct platform_device *pdev) #endif add_mtd_device(&info->mtd); - omap_nand_wp(&info->mtd, NAND_WP_OFF); - platform_set_drvdata(pdev, &info->mtd); return 0; -- 2.41.1