return !cfqd->busy_queues;
}
-static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
+static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
{
- if (rw == READ || rw == WRITE_SYNC)
+ /*
+ * Use the per-process queue, for read requests and syncronous writes
+ */
+ if (!(rw & REQ_RW) || is_sync)
return task->pid;
return CFQ_KEY_ASYNC;
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
{
struct task_struct *tsk = current;
- pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
+ pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
struct cfq_queue *cfqq;
cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
struct cfq_data *cfqd = q->elevator->elevator_data;
struct task_struct *tsk = current;
struct cfq_queue *cfqq;
+ unsigned int key;
+
+ key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
/*
* don't force setup of a queue from here, as a call to may_queue
* so just lookup a possibly existing queue, or return 'may queue'
* if that fails
*/
- cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
+ cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
if (cfqq) {
cfq_init_prio_data(cfqq);
cfq_prio_boost(cfqq);
struct task_struct *tsk = current;
struct cfq_io_context *cic;
const int rw = rq_data_dir(rq);
- pid_t key = cfq_queue_pid(tsk, rw);
+ const int is_sync = rq_is_sync(rq);
+ pid_t key = cfq_queue_pid(tsk, rw, is_sync);
struct cfq_queue *cfqq;
unsigned long flags;
- int is_sync = key != CFQ_KEY_ASYNC;
might_sleep_if(gfp_mask & __GFP_WAIT);
* Returns NULL on failure, with queue_lock held.
* Returns !NULL on success, with queue_lock *not held*.
*/
-static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
- gfp_t gfp_mask)
+static struct request *get_request(request_queue_t *q, int rw_flags,
+ struct bio *bio, gfp_t gfp_mask)
{
struct request *rq = NULL;
struct request_list *rl = &q->rq;
struct io_context *ioc = NULL;
+ const int rw = rw_flags & 0x01;
int may_queue, priv;
- may_queue = elv_may_queue(q, rw);
+ may_queue = elv_may_queue(q, rw_flags);
if (may_queue == ELV_MQUEUE_NO)
goto rq_starved;
spin_unlock_irq(q->queue_lock);
- rq = blk_alloc_request(q, rw, priv, gfp_mask);
+ rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
if (unlikely(!rq)) {
/*
* Allocation failed presumably due to memory. Undo anything
*
* Called with q->queue_lock held, and returns with it unlocked.
*/
-static struct request *get_request_wait(request_queue_t *q, int rw,
+static struct request *get_request_wait(request_queue_t *q, int rw_flags,
struct bio *bio)
{
+ const int rw = rw_flags & 0x01;
struct request *rq;
- rq = get_request(q, rw, bio, GFP_NOIO);
+ rq = get_request(q, rw_flags, bio, GFP_NOIO);
while (!rq) {
DEFINE_WAIT(wait);
struct request_list *rl = &q->rq;
prepare_to_wait_exclusive(&rl->wait[rw], &wait,
TASK_UNINTERRUPTIBLE);
- rq = get_request(q, rw, bio, GFP_NOIO);
+ rq = get_request(q, rw_flags, bio, GFP_NOIO);
if (!rq) {
struct io_context *ioc;
int el_ret, nr_sectors, barrier, err;
const unsigned short prio = bio_prio(bio);
const int sync = bio_sync(bio);
+ int rw_flags;
nr_sectors = bio_sectors(bio);
}
get_rq:
+ /*
+ * This sync check and mask will be re-done in init_request_from_bio(),
+ * but we need to set it earlier to expose the sync flag to the
+ * rq allocator and io schedulers.
+ */
+ rw_flags = bio_data_dir(bio);
+ if (sync)
+ rw_flags |= REQ_RW_SYNC;
+
/*
* Grab a free request. This is might sleep but can not fail.
* Returns with the queue unlocked.
*/
- req = get_request_wait(q, bio_data_dir(bio), bio);
+ req = get_request_wait(q, rw_flags, bio);
/*
* After dropping the lock and possibly sleeping here, our request