]> pilppa.com Git - linux-2.6-omap-h63xx.git/commitdiff
[PATCH] bitops: m32r: use generic bitops
authorAkinobu Mita <mita@miraclelinux.com>
Sun, 26 Mar 2006 09:39:26 +0000 (01:39 -0800)
committerLinus Torvalds <torvalds@g5.osdl.org>
Sun, 26 Mar 2006 16:57:12 +0000 (08:57 -0800)
- remove __{,test_and_}{set,clear,change}_bit() and test_bit()
- remove ffz()
- remove find_{next,first}{,_zero}_bit()
- remove __ffs()
- remove generic_fls()
- remove generic_fls64()
- remove sched_find_first_bit()
- remove generic_ffs()
- remove generic_hweight{32,16,8}()
- remove ext2_{set,clear,test,find_first_zero,find_next_zero}_bit()
- remove ext2_{set,clear}_bit_atomic()
- remove minix_{test,set,test_and_clear,test,find_first_zero}_bit()

Signed-off-by: Akinobu Mita <mita@miraclelinux.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
arch/m32r/Kconfig
include/asm-m32r/bitops.h

index a3dcc3fab4b736660ab3b621d3321c730949f501..05c864c6c2d937e31f893c3b1aa783e190906c33 100644 (file)
@@ -214,6 +214,14 @@ config RWSEM_XCHGADD_ALGORITHM
        bool
        default n
 
+config GENERIC_FIND_NEXT_BIT
+       bool
+       default y
+
+config GENERIC_HWEIGHT
+       bool
+       default y
+
 config GENERIC_CALIBRATE_DELAY
        bool
        default y
index f8e993e0bbc05fa2bff22dc0a8579c09f17b7531..902a366101a5dc6b66f173ec5107d8e1b871f366 100644 (file)
@@ -62,25 +62,6 @@ static __inline__ void set_bit(int nr, volatile void * addr)
        local_irq_restore(flags);
 }
 
-/**
- * __set_bit - Set a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * Unlike set_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
-static __inline__ void __set_bit(int nr, volatile void * addr)
-{
-       __u32 mask;
-       volatile __u32 *a = addr;
-
-       a += (nr >> 5);
-       mask = (1 << (nr & 0x1F));
-       *a |= mask;
-}
-
 /**
  * clear_bit - Clears a bit in memory
  * @nr: Bit to clear
@@ -118,38 +99,9 @@ static __inline__ void clear_bit(int nr, volatile void * addr)
        local_irq_restore(flags);
 }
 
-static __inline__ void __clear_bit(int nr, volatile unsigned long * addr)
-{
-       unsigned long mask;
-       volatile unsigned long *a = addr;
-
-       a += (nr >> 5);
-       mask = (1 << (nr & 0x1F));
-       *a &= ~mask;
-}
-
 #define smp_mb__before_clear_bit()     barrier()
 #define smp_mb__after_clear_bit()      barrier()
 
-/**
- * __change_bit - Toggle a bit in memory
- * @nr: the bit to set
- * @addr: the address to start counting from
- *
- * Unlike change_bit(), this function is non-atomic and may be reordered.
- * If it's called on the same region of memory simultaneously, the effect
- * may be that only one operation succeeds.
- */
-static __inline__ void __change_bit(int nr, volatile void * addr)
-{
-       __u32 mask;
-       volatile __u32 *a = addr;
-
-       a += (nr >> 5);
-       mask = (1 << (nr & 0x1F));
-       *a ^= mask;
-}
-
 /**
  * change_bit - Toggle a bit in memory
  * @nr: Bit to clear
@@ -220,28 +172,6 @@ static __inline__ int test_and_set_bit(int nr, volatile void * addr)
        return (oldbit != 0);
 }
 
-/**
- * __test_and_set_bit - Set a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail.  You must protect multiple accesses with a lock.
- */
-static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
-{
-       __u32 mask, oldbit;
-       volatile __u32 *a = addr;
-
-       a += (nr >> 5);
-       mask = (1 << (nr & 0x1F));
-       oldbit = (*a & mask);
-       *a |= mask;
-
-       return (oldbit != 0);
-}
-
 /**
  * test_and_clear_bit - Clear a bit and return its old value
  * @nr: Bit to set
@@ -279,42 +209,6 @@ static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
        return (oldbit != 0);
 }
 
-/**
- * __test_and_clear_bit - Clear a bit and return its old value
- * @nr: Bit to set
- * @addr: Address to count from
- *
- * This operation is non-atomic and can be reordered.
- * If two examples of this operation race, one can appear to succeed
- * but actually fail.  You must protect multiple accesses with a lock.
- */
-static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
-{
-       __u32 mask, oldbit;
-       volatile __u32 *a = addr;
-
-       a += (nr >> 5);
-       mask = (1 << (nr & 0x1F));
-       oldbit = (*a & mask);
-       *a &= ~mask;
-
-       return (oldbit != 0);
-}
-
-/* WARNING: non atomic and it can be reordered! */
-static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
-{
-       __u32 mask, oldbit;
-       volatile __u32 *a = addr;
-
-       a += (nr >> 5);
-       mask = (1 << (nr & 0x1F));
-       oldbit = (*a & mask);
-       *a ^= mask;
-
-       return (oldbit != 0);
-}
-
 /**
  * test_and_change_bit - Change a bit and return its old value
  * @nr: Bit to set
@@ -350,353 +244,26 @@ static __inline__ int test_and_change_bit(int nr, volatile void * addr)
        return (oldbit != 0);
 }
 
-/**
- * test_bit - Determine whether a bit is set
- * @nr: bit number to test
- * @addr: Address to start counting from
- */
-static __inline__ int test_bit(int nr, const volatile void * addr)
-{
-       __u32 mask;
-       const volatile __u32 *a = addr;
-
-       a += (nr >> 5);
-       mask = (1 << (nr & 0x1F));
-
-       return ((*a & mask) != 0);
-}
-
-/**
- * ffz - find first zero in word.
- * @word: The word to search
- *
- * Undefined if no zero exists, so code should check against ~0UL first.
- */
-static __inline__ unsigned long ffz(unsigned long word)
-{
-       int k;
-
-       word = ~word;
-       k = 0;
-       if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
-       if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
-       if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
-       if (!(word & 0x00000003)) { k += 2; word >>= 2; }
-       if (!(word & 0x00000001)) { k += 1; }
-
-       return k;
-}
-
-/**
- * find_first_zero_bit - find the first zero bit in a memory region
- * @addr: The address to start the search at
- * @size: The maximum size to search
- *
- * Returns the bit-number of the first zero bit, not the number of the byte
- * containing a bit.
- */
-
-#define find_first_zero_bit(addr, size) \
-       find_next_zero_bit((addr), (size), 0)
-
-/**
- * find_next_zero_bit - find the first zero bit in a memory region
- * @addr: The address to base the search on
- * @offset: The bitnumber to start searching at
- * @size: The maximum size to search
- */
-static __inline__ int find_next_zero_bit(const unsigned long *addr,
-                                        int size, int offset)
-{
-       const unsigned long *p = addr + (offset >> 5);
-       unsigned long result = offset & ~31UL;
-       unsigned long tmp;
-
-       if (offset >= size)
-               return size;
-       size -= result;
-       offset &= 31UL;
-       if (offset) {
-               tmp = *(p++);
-               tmp |= ~0UL >> (32-offset);
-               if (size < 32)
-                       goto found_first;
-               if (~tmp)
-                       goto found_middle;
-               size -= 32;
-               result += 32;
-       }
-       while (size & ~31UL) {
-               if (~(tmp = *(p++)))
-                       goto found_middle;
-               result += 32;
-               size -= 32;
-       }
-       if (!size)
-               return result;
-       tmp = *p;
-
-found_first:
-       tmp |= ~0UL << size;
-found_middle:
-       return result + ffz(tmp);
-}
-
-/**
- * __ffs - find first bit in word.
- * @word: The word to search
- *
- * Undefined if no bit exists, so code should check against 0 first.
- */
-static __inline__ unsigned long __ffs(unsigned long word)
-{
-       int k = 0;
-
-       if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
-       if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
-       if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
-       if (!(word & 0x00000003)) { k += 2; word >>= 2; }
-       if (!(word & 0x00000001)) { k += 1;}
-
-       return k;
-}
-
-/*
- * fls: find last bit set.
- */
-#define fls(x) generic_fls(x)
-#define fls64(x)   generic_fls64(x)
+#include <asm-generic/bitops/non-atomic.h>
+#include <asm-generic/bitops/ffz.h>
+#include <asm-generic/bitops/__ffs.h>
+#include <asm-generic/bitops/fls.h>
+#include <asm-generic/bitops/fls64.h>
 
 #ifdef __KERNEL__
 
-/*
- * Every architecture must define this function. It's the fastest
- * way of searching a 140-bit bitmap where the first 100 bits are
- * unlikely to be set. It's guaranteed that at least one of the 140
- * bits is cleared.
- */
-static inline int sched_find_first_bit(unsigned long *b)
-{
-       if (unlikely(b[0]))
-               return __ffs(b[0]);
-       if (unlikely(b[1]))
-               return __ffs(b[1]) + 32;
-       if (unlikely(b[2]))
-               return __ffs(b[2]) + 64;
-       if (b[3])
-               return __ffs(b[3]) + 96;
-       return __ffs(b[4]) + 128;
-}
-
-/**
- * find_next_bit - find the first set bit in a memory region
- * @addr: The address to base the search on
- * @offset: The bitnumber to start searching at
- * @size: The maximum size to search
- */
-static inline unsigned long find_next_bit(const unsigned long *addr,
-       unsigned long size, unsigned long offset)
-{
-       unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
-       unsigned int result = offset & ~31UL;
-       unsigned int tmp;
-
-       if (offset >= size)
-               return size;
-       size -= result;
-       offset &= 31UL;
-       if (offset) {
-               tmp = *p++;
-               tmp &= ~0UL << offset;
-               if (size < 32)
-                       goto found_first;
-               if (tmp)
-                       goto found_middle;
-               size -= 32;
-               result += 32;
-       }
-       while (size >= 32) {
-               if ((tmp = *p++) != 0)
-                       goto found_middle;
-               result += 32;
-               size -= 32;
-       }
-       if (!size)
-               return result;
-       tmp = *p;
-
-found_first:
-       tmp &= ~0UL >> (32 - size);
-       if (tmp == 0UL)        /* Are any bits set? */
-               return result + size; /* Nope. */
-found_middle:
-       return result + __ffs(tmp);
-}
-
-/**
- * find_first_bit - find the first set bit in a memory region
- * @addr: The address to start the search at
- * @size: The maximum size to search
- *
- * Returns the bit-number of the first set bit, not the number of the byte
- * containing a bit.
- */
-#define find_first_bit(addr, size) \
-       find_next_bit((addr), (size), 0)
-
-/**
- * ffs - find first bit set
- * @x: the word to search
- *
- * This is defined the same way as
- * the libc and compiler builtin ffs routines, therefore
- * differs in spirit from the above ffz (man ffs).
- */
-#define ffs(x) generic_ffs(x)
-
-/**
- * hweightN - returns the hamming weight of a N-bit word
- * @x: the word to weigh
- *
- * The Hamming Weight of a number is the total number of bits set in it.
- */
-
-#define hweight32(x)   generic_hweight32(x)
-#define hweight16(x)   generic_hweight16(x)
-#define hweight8(x)    generic_hweight8(x)
+#include <asm-generic/bitops/sched.h>
+#include <asm-generic/bitops/find.h>
+#include <asm-generic/bitops/ffs.h>
+#include <asm-generic/bitops/hweight.h>
 
 #endif /* __KERNEL__ */
 
 #ifdef __KERNEL__
 
-/*
- * ext2_XXXX function
- * orig: include/asm-sh/bitops.h
- */
-
-#ifdef __LITTLE_ENDIAN__
-#define ext2_set_bit                   __test_and_set_bit
-#define ext2_clear_bit                 __test_and_clear_bit
-#define ext2_test_bit                  test_bit
-#define ext2_find_first_zero_bit       find_first_zero_bit
-#define ext2_find_next_zero_bit                find_next_zero_bit
-#else
-static inline int ext2_set_bit(int nr, volatile void * addr)
-{
-       __u8 mask, oldbit;
-       volatile __u8 *a = addr;
-
-       a += (nr >> 3);
-       mask = (1 << (nr & 0x07));
-       oldbit = (*a & mask);
-       *a |= mask;
-
-       return (oldbit != 0);
-}
-
-static inline int ext2_clear_bit(int nr, volatile void * addr)
-{
-       __u8 mask, oldbit;
-       volatile __u8 *a = addr;
-
-       a += (nr >> 3);
-       mask = (1 << (nr & 0x07));
-       oldbit = (*a & mask);
-       *a &= ~mask;
-
-       return (oldbit != 0);
-}
-
-static inline int ext2_test_bit(int nr, const volatile void * addr)
-{
-       __u32 mask;
-       const volatile __u8 *a = addr;
-
-       a += (nr >> 3);
-       mask = (1 << (nr & 0x07));
-
-       return ((mask & *a) != 0);
-}
-
-#define ext2_find_first_zero_bit(addr, size) \
-       ext2_find_next_zero_bit((addr), (size), 0)
-
-static inline unsigned long ext2_find_next_zero_bit(void *addr,
-       unsigned long size, unsigned long offset)
-{
-       unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
-       unsigned long result = offset & ~31UL;
-       unsigned long tmp;
-
-       if (offset >= size)
-               return size;
-       size -= result;
-       offset &= 31UL;
-       if(offset) {
-               /* We hold the little endian value in tmp, but then the
-                * shift is illegal. So we could keep a big endian value
-                * in tmp, like this:
-                *
-                * tmp = __swab32(*(p++));
-                * tmp |= ~0UL >> (32-offset);
-                *
-                * but this would decrease preformance, so we change the
-                * shift:
-                */
-               tmp = *(p++);
-               tmp |= __swab32(~0UL >> (32-offset));
-               if(size < 32)
-                       goto found_first;
-               if(~tmp)
-                       goto found_middle;
-               size -= 32;
-               result += 32;
-       }
-       while(size & ~31UL) {
-               if(~(tmp = *(p++)))
-                       goto found_middle;
-               result += 32;
-               size -= 32;
-       }
-       if(!size)
-               return result;
-       tmp = *p;
-
-found_first:
-       /* tmp is little endian, so we would have to swab the shift,
-        * see above. But then we have to swab tmp below for ffz, so
-        * we might as well do this here.
-        */
-       return result + ffz(__swab32(tmp) | (~0UL << size));
-found_middle:
-       return result + ffz(__swab32(tmp));
-}
-#endif
-
-#define ext2_set_bit_atomic(lock, nr, addr)            \
-       ({                                              \
-               int ret;                                \
-               spin_lock(lock);                        \
-               ret = ext2_set_bit((nr), (addr));       \
-               spin_unlock(lock);                      \
-               ret;                                    \
-       })
-
-#define ext2_clear_bit_atomic(lock, nr, addr)          \
-       ({                                              \
-               int ret;                                \
-               spin_lock(lock);                        \
-               ret = ext2_clear_bit((nr), (addr));     \
-               spin_unlock(lock);                      \
-               ret;                                    \
-       })
-
-/* Bitmap functions for the minix filesystem.  */
-#define minix_test_and_set_bit(nr,addr)                __test_and_set_bit(nr,addr)
-#define minix_set_bit(nr,addr)                 __set_bit(nr,addr)
-#define minix_test_and_clear_bit(nr,addr)      __test_and_clear_bit(nr,addr)
-#define minix_test_bit(nr,addr) test_bit(nr,addr)
-#define minix_find_first_zero_bit(addr,size)   find_first_zero_bit(addr,size)
+#include <asm-generic/bitops/ext2-non-atomic.h>
+#include <asm-generic/bitops/ext2-atomic.h>
+#include <asm-generic/bitops/minix.h>
 
 #endif /* __KERNEL__ */