static const char *part_probes[] = { "cmdlinepart", NULL };
#endif
-static int hw_ecc = 1;
-
-/* new oob placement block for use with hardware ecc generation */
-static struct nand_ecclayout omap_hw_eccoob = {
- .eccbytes = 12,
- .eccpos = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
- .oobfree = {{16, 32}, {33, 63} },
-};
-
struct omap_nand_info {
struct nand_hw_control controller;
struct omap_nand_platform_data *pdata;
void __iomem *gpmc_cs_baseaddr;
void __iomem *gpmc_baseaddr;
};
+
+/*
+ * omap_nand_wp - This function enable or disable the Write Protect feature on
+ * NAND device
+ * @mtd: MTD device structure
+ * @mode: WP ON/OFF
+ */
static void omap_nand_wp(struct mtd_info *mtd, int mode)
{
struct omap_nand_info *info = container_of(mtd,
}
/*
-* omap_read_buf - read data from NAND controller into buffer
-* @mtd: MTD device structure
-* @buf: buffer to store date
-* @len: number of bytes to read
-*/
+ * omap_read_buf - read data from NAND controller into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
static void omap_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct omap_nand_info *info = container_of(mtd,
}
/*
-* omap_write_buf - write buffer to NAND controller
-* @mtd: MTD device structure
-* @buf: data buffer
-* @len: number of bytes to write
-*/
+ * omap_write_buf - write buffer to NAND controller
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
static void omap_write_buf(struct mtd_info *mtd, const u_char * buf, int len)
{
struct omap_nand_info *info = container_of(mtd,
return 0;
}
+#ifdef CONFIG_MTD_NAND_OMAP_HWECC
+/*
+ * omap_hwecc_init-Initialize the Hardware ECC for NAND flash in GPMC controller
+ * @mtd: MTD device structure
+ */
static void omap_hwecc_init(struct mtd_info *mtd)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
+ register struct nand_chip *chip = mtd->priv;
unsigned long val = 0x0;
/* Read from ECC Control Register */
/* Read from ECC Size Config Register */
val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
- /* ECCSIZE1=512 | ECCSIZE0=8bytes | Select eccResultsize[0123] */
- val = ((0x000000FF<<22) | (0x00000003<<12) | (0x0000000F));
+ /* ECCSIZE1=512 | Select eccResultsize[0-3] */
+ val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F));
__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
-
-
}
/*
- * This function will generate true ECC value, which can be used
+ * gen_true_ecc - This function will generate true ECC value, which can be used
* when correcting data read from NAND flash memory core
+ * @ecc_buf: buffer to store ecc code
*/
static void gen_true_ecc(u8 *ecc_buf)
{
}
/*
- * This function compares two ECC's and indicates if there is an error.
- * If the error can be corrected it will be corrected to the buffer
+ * omap_compare_ecc - This function compares two ECC's and indicates if there
+ * is an error. If the error can be corrected it will be corrected to the
+ * buffer
+ * @ecc_data1: ecc code from nand spare area
+ * @ecc_data2: ecc code from hardware register obtained from hardware ecc
+ * @page_data: page data
*/
static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
u8 *ecc_data2, /* read from register */
}
}
+/*
+ * omap_correct_data - Compares the ecc read from nand spare area with ECC
+ * registers values and corrects one bit error if it has occured
+ * @mtd: MTD device structure
+ * @dat: page data
+ * @read_ecc: ecc read from nand flash
+ * @calc_ecc: ecc read from ECC registers
+ */
static int omap_correct_data(struct mtd_info *mtd, u_char * dat,
u_char * read_ecc, u_char * calc_ecc)
{
}
/*
-** Generate non-inverted ECC bytes.
-**
-** Using noninverted ECC can be considered ugly since writing a blank
-** page ie. padding will clear the ECC bytes. This is no problem as long
-** nobody is trying to write data on the seemingly unused page.
-**
-** Reading an erased page will produce an ECC mismatch between
-** generated and read ECC bytes that has to be dealt with separately.
-*/
+ * omap_calcuate_ecc - Generate non-inverted ECC bytes.
+ * Using noninverted ECC can be considered ugly since writing a blank
+ * page ie. padding will clear the ECC bytes. This is no problem as long
+ * nobody is trying to write data on the seemingly unused page. Reading
+ * an erased page will produce an ECC mismatch between generated and read
+ * ECC bytes that has to be dealt with separately.
+ * @mtd: MTD device structure
+ * @dat: The pointer to data on which ecc is computed
+ * @ecc_code: The ecc_code buffer
+ */
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
unsigned long val = 0x0;
- unsigned long reg, n;
-
- /* Ex NAND_ECC_HW12_2048 */
- if ((info->nand.ecc.mode == NAND_ECC_HW) &&
- (info->nand.ecc.size == 2048))
- n = 4;
- else
- n = 1;
+ unsigned long reg;
/* Start Reading from HW ECC1_Result = 0x200 */
reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT);
- while (n--) {
- val = __raw_readl(reg);
- *ecc_code++ = val; /* P128e, ..., P1e */
- *ecc_code++ = val >> 16; /* P128o, ..., P1o */
- /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
- *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
- reg += 4;
- }
+ val = __raw_readl(reg);
+ *ecc_code++ = val; /* P128e, ..., P1e */
+ *ecc_code++ = val >> 16; /* P128o, ..., P1o */
+ /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
+ *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
+ reg += 4;
return 0;
-} /* omap_calculate_ecc */
+}
+/*
+ * omap_enable_hwecc - This function enables the hardware ecc functionality
+ * @mtd: MTD device structure
+ * @mode: Read/Write mode
+ */
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
mtd);
+ register struct nand_chip *chip = mtd->priv;
+ unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG);
switch (mode) {
case NAND_ECC_READ :
__raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
- /* ECC 16 bit col) | ( CS 0 ) | ECC Enable */
- val = (1 << 7) | (0x0) | (0x1) ;
+ /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
+ val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
break;
case NAND_ECC_READSYN :
- __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
- /* ECC 16 bit col) | ( CS 0 ) | ECC Enable */
- val = (1 << 7) | (0x0) | (0x1) ;
+ __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+ /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
+ val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
break;
case NAND_ECC_WRITE :
__raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
- /* ECC 16 bit col) | ( CS 0 ) | ECC Enable */
- val = (1 << 7) | (0x0) | (0x1) ;
+ /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
+ val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
break;
default:
DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n",
__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG);
}
+#endif
+/*
+ * omap_wait - Wait function is called during Program and erase
+ * operations and the way it is called from MTD layer, we should wait
+ * till the NAND chip is ready after the programming/erase operation
+ * has completed.
+ * @mtd: MTD device structure
+ * @chip: NAND Chip structure
+ */
+static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+ register struct nand_chip *this = mtd->priv;
+ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+ mtd);
+ int status = 0;
+
+ this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr +
+ GPMC_CS_NAND_COMMAND;
+ this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA;
+
+ while (!(status & 0x40)) {
+ __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W);
+ status = __raw_readb(this->IO_ADDR_R);
+ }
+ return status;
+}
+
+/*
+ * omap_dev_ready - calls the platform specific dev_ready function
+ * @mtd: MTD device structure
+ */
static int omap_dev_ready(struct mtd_info *mtd)
{
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
struct omap_nand_info *info;
struct omap_nand_platform_data *pdata;
int err;
- unsigned long val;
+ unsigned long val;
pdata = pdev->dev.platform_data;
}
/* Enable RD PIN Monitoring Reg */
- val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1);
- val |= WR_RD_PIN_MONITORING;
- gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val);
+ if (pdata->dev_ready) {
+ val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1);
+ val |= WR_RD_PIN_MONITORING;
+ gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val);
+ }
val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7);
val &= ~(0xf << 8);
val |= (0xc & 0xf) << 8;
gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val);
+ /* NAND write protect off */
+ omap_nand_wp(&info->mtd, NAND_WP_OFF);
+
if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
pdev->dev.driver->name)) {
err = -EBUSY;
info->nand.write_buf = omap_write_buf;
info->nand.verify_buf = omap_verify_buf;
- info->nand.dev_ready = omap_dev_ready;
- info->nand.chip_delay = 0;
-
- /* Options */
- info->nand.options = NAND_BUSWIDTH_16;
- info->nand.options |= NAND_SKIP_BBTSCAN;
-
- if (hw_ecc) {
- /* init HW ECC */
- omap_hwecc_init(&info->mtd);
-
- info->nand.ecc.calculate = omap_calculate_ecc;
- info->nand.ecc.hwctl = omap_enable_hwecc;
- info->nand.ecc.correct = omap_correct_data;
- info->nand.ecc.mode = NAND_ECC_HW;
- info->nand.ecc.bytes = 12;
- info->nand.ecc.size = 2048;
- info->nand.ecc.layout = &omap_hw_eccoob;
-
+ /*
+ * If RDY/BSY line is connected to OMAP then use the omap ready funcrtion
+ * and the generic nand_wait function which reads the status register
+ * after monitoring the RDY/BSY line.Otherwise use a standard chip delay
+ * which is slightly more than tR (AC Timing) of the NAND device and read
+ * status register until you get a failure or success
+ */
+ if (pdata->dev_ready) {
+ info->nand.dev_ready = omap_dev_ready;
+ info->nand.chip_delay = 0;
} else {
- info->nand.ecc.mode = NAND_ECC_SOFT;
+ info->nand.waitfunc = omap_wait;
+ info->nand.chip_delay = 50;
}
+ info->nand.options |= NAND_SKIP_BBTSCAN;
+ if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000)
+ == 0x1000)
+ info->nand.options |= NAND_BUSWIDTH_16;
+
+#ifdef CONFIG_MTD_NAND_OMAP_HWECC
+ info->nand.ecc.bytes = 3;
+ info->nand.ecc.size = 512;
+ info->nand.ecc.calculate = omap_calculate_ecc;
+ info->nand.ecc.hwctl = omap_enable_hwecc;
+ info->nand.ecc.correct = omap_correct_data;
+ info->nand.ecc.mode = NAND_ECC_HW;
+
+ /* init HW ECC */
+ omap_hwecc_init(&info->mtd);
+#else
+ info->nand.ecc.mode = NAND_ECC_SOFT;
+#endif
/* DIP switches on some boards change between 8 and 16 bit
* bus widths for flash. Try the other width if the first try fails.
#endif
add_mtd_device(&info->mtd);
- omap_nand_wp(&info->mtd, NAND_WP_OFF);
-
platform_set_drvdata(pdev, &info->mtd);
return 0;