--- /dev/null
+/*
+ * drivers/i2c/chips/lm8323.c
+ *
+ * Copyright (C) 2007 Nokia Corporation
+ *
+ * Written by Daniel Stone <daniel.stone@nokia.com>
+ * Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation (version 2 of the License only).
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#include <linux/module.h>
+#include <linux/i2c.h>
+#include <linux/interrupt.h>
+#include <linux/sched.h>
+#include <linux/mutex.h>
+#include <linux/delay.h>
+#include <linux/input.h>
+#include <linux/leds.h>
+#include <linux/i2c/lm8323.h>
+
+#include <asm/mach-types.h>
+#include <asm/mach/irq.h>
+
+#ifdef VERBOSE
+#define debug dev_dbg
+#else
+#define debug(...)
+#endif
+
+/* Commands to send to the chip. */
+#define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
+#define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
+#define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
+#define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
+#define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
+#define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
+#define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
+#define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
+#define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
+#define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
+#define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
+#define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
+#define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
+#define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
+#define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
+#define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
+#define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
+#define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
+#define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
+#define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
+#define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
+#define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
+
+/* Interrupt status. */
+#define INT_KEYPAD 0x01 /* Key event. */
+#define INT_ROTATOR 0x02 /* Rotator event. */
+#define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
+#define INT_NOINIT 0x10 /* Lost configuration. */
+#define INT_PWM1 0x20 /* PWM1 stopped. */
+#define INT_PWM2 0x40 /* PWM2 stopped. */
+#define INT_PWM3 0x80 /* PWM3 stopped. */
+
+/* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
+#define ERR_BADPAR 0x01 /* Bad parameter. */
+#define ERR_CMDUNK 0x02 /* Unknown command. */
+#define ERR_KEYOVR 0x04 /* Too many keys pressed. */
+#define ERR_FIFOOVER 0x40 /* FIFO overflow. */
+
+/* Configuration keys (CMD_{WRITE,READ}_CFG). */
+#define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
+#define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
+#define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
+#define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
+#define CFG_PSIZE 0x20 /* Package size (must be 0). */
+#define CFG_ROTEN 0x40 /* Enable rotator. */
+
+/* Clock settings (CMD_{WRITE,READ}_CLOCK). */
+#define CLK_RCPWM_INTERNAL 0x00
+#define CLK_RCPWM_EXTERNAL 0x03
+#define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
+#define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
+
+/* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
+#define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
+#define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
+#define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
+#define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
+
+/* Key event fifo length */
+#define LM8323_FIFO_LEN 15
+
+/* Commands for PWM engine; feed in with PWM_WRITE. */
+/* Load ramp counter from duty cycle field (range 0 - 0xff). */
+#define PWM_SET(v) (0x4000 | ((v) & 0xff))
+/* Go to start of script. */
+#define PWM_GOTOSTART 0x0000
+/*
+ * Stop engine (generates interrupt). If reset is 1, clear the program
+ * counter, else leave it.
+ */
+#define PWM_END(reset) (0xc000 | (!!(reset) << 11))
+/*
+ * Ramp. If s is 1, divide clock by 512, else divide clock by 16.
+ * Take t clock scales (up to 63) per step, for n steps (up to 126).
+ * If u is set, ramp up, else ramp down.
+ */
+#define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
+ ((n) & 0x7f) | ((u) ? 0 : 0x80))
+/*
+ * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
+ * If cnt is zero, execute until PWM_END is encountered.
+ */
+#define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
+ ((pos) & 0x3f))
+/*
+ * Wait for trigger. Argument is a mask of channels, shifted by the channel
+ * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
+ * from 1, not 0.
+ */
+#define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
+/* Send trigger. Argument is same as PWM_WAIT_TRIG. */
+#define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
+
+#define DRIVER_NAME "lm8323"
+
+struct lm8323_pwm {
+ int id;
+ int enabled;
+ int fade_time;
+ int brightness;
+ int desired_brightness;
+ struct work_struct work;
+ struct led_classdev cdev;
+};
+
+struct lm8323_chip {
+ struct mutex lock;
+ struct i2c_client *client;
+ struct work_struct work;
+ struct input_dev *idev;
+ int irq;
+ unsigned kp_enabled : 1;
+ unsigned pm_suspend : 1;
+ unsigned keys_down;
+ char phys[32];
+ s16 keymap[LM8323_KEYMAP_SIZE];
+ int size_x;
+ int size_y;
+ int debounce_time;
+ int active_time;
+ struct lm8323_pwm pwm1;
+ struct lm8323_pwm pwm2;
+ struct lm8323_pwm pwm3;
+};
+
+#define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
+#define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
+#define work_to_lm8323(w) container_of(w, struct lm8323_chip, work)
+#define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
+#define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
+
+static struct lm8323_chip *pwm_to_lm8323(struct lm8323_pwm *pwm)
+{
+ switch (pwm->id) {
+ case 1:
+ return container_of(pwm, struct lm8323_chip, pwm1);
+ case 2:
+ return container_of(pwm, struct lm8323_chip, pwm2);
+ case 3:
+ return container_of(pwm, struct lm8323_chip, pwm3);
+ default:
+ return NULL;
+ }
+}
+
+static struct lm8323_platform_data *lm8323_pdata;
+
+
+#define LM8323_MAX_DATA 8
+
+/*
+ * To write, we just access the chip's address in write mode, and dump the
+ * command and data out on the bus. The command byte and data are taken as
+ * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
+ */
+static int lm8323_write(struct lm8323_chip *lm, int len, ...)
+{
+ int ret, i;
+ va_list ap;
+ u8 data[LM8323_MAX_DATA];
+
+ va_start(ap, len);
+
+ if (unlikely(len > LM8323_MAX_DATA)) {
+ dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
+ va_end(ap);
+ return 0;
+ }
+
+ for (i = 0; i < len; i++)
+ data[i] = va_arg(ap, int);
+
+ va_end(ap);
+
+ /*
+ * If the host is asleep while we send the data, we can get a NACK
+ * back while it wakes up, so try again, once.
+ */
+ ret = i2c_master_send(lm->client, data, len);
+ if (unlikely(ret == -EREMOTEIO))
+ ret = i2c_master_send(lm->client, data, len);
+ if (unlikely(ret != len))
+ dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
+ len, ret);
+
+ return ret;
+}
+
+/*
+ * To read, we first send the command byte to the chip and end the transaction,
+ * then access the chip in read mode, at which point it will send the data.
+ */
+static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
+{
+ int ret;
+
+ /*
+ * If the host is asleep while we send the byte, we can get a NACK
+ * back while it wakes up, so try again, once.
+ */
+ ret = i2c_master_send(lm->client, &cmd, 1);
+ if (unlikely(ret == -EREMOTEIO))
+ ret = i2c_master_send(lm->client, &cmd, 1);
+ if (unlikely(ret != 1)) {
+ dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
+ cmd);
+ return 0;
+ }
+
+ ret = i2c_master_recv(lm->client, buf, len);
+ if (unlikely(ret != len))
+ dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
+ len, ret);
+
+ return ret;
+}
+
+/*
+ * Set the chip active time (idle time before it enters halt).
+ */
+static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
+{
+ lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
+}
+
+/*
+ * The signals are AT-style: the low 7 bits are the keycode, and the top
+ * bit indicates the state (1 for down, 0 for up).
+ */
+static inline u8 lm8323_whichkey(u8 event)
+{
+ return event & 0x7f;
+}
+
+static inline int lm8323_ispress(u8 event)
+{
+ return (event & 0x80) ? 1 : 0;
+}
+
+static void process_keys(struct lm8323_chip *lm)
+{
+ u8 event;
+ u8 key_fifo[LM8323_FIFO_LEN + 1];
+ int old_keys_down = lm->keys_down;
+ int ret;
+ int i = 0;
+
+ /*
+ * Read all key events from the FIFO at once. Next READ_FIFO clears the
+ * FIFO even if we didn't read all events previously.
+ */
+ ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
+
+ if (ret < 0) {
+ dev_err(&lm->client->dev, "Failed reading fifo \n");
+ return;
+ }
+ key_fifo[ret] = 0;
+
+ while ((event = key_fifo[i])) {
+ u8 key = lm8323_whichkey(event);
+ int isdown = lm8323_ispress(event);
+ s16 keycode = lm->keymap[key];
+
+ if (likely(keycode > 0)) {
+ debug(&lm->client->dev, "key 0x%02x %s\n", key,
+ isdown ? "down" : "up");
+ if (likely(lm->kp_enabled)) {
+ input_report_key(lm->idev, keycode, isdown);
+ input_sync(lm->idev);
+ }
+ if (isdown)
+ lm->keys_down++;
+ else
+ lm->keys_down--;
+ } else {
+ dev_err(&lm->client->dev, "keycode 0x%02x not mapped "
+ "to any key\n", key);
+ }
+ i++;
+ }
+
+ /*
+ * Errata: We need to ensure that the chip never enters halt mode
+ * during a keypress, so set active time to 0. When it's released,
+ * we can enter halt again, so set the active time back to normal.
+ */
+ if (!old_keys_down && lm->keys_down)
+ lm8323_set_active_time(lm, 0);
+ if (old_keys_down && !lm->keys_down)
+ lm8323_set_active_time(lm, lm->active_time);
+}
+
+static void lm8323_process_error(struct lm8323_chip *lm)
+{
+ u8 error;
+
+ if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
+ if (error & ERR_FIFOOVER)
+ debug(&lm->client->dev, "fifo overflow!\n");
+ if (error & ERR_KEYOVR)
+ debug(&lm->client->dev, "more than two keys pressed\n");
+ if (error & ERR_CMDUNK)
+ debug(&lm->client->dev, "unknown command submitted\n");
+ if (error & ERR_BADPAR)
+ debug(&lm->client->dev, "bad command parameter\n");
+ }
+}
+
+static void lm8323_reset(struct lm8323_chip *lm)
+{
+ /* The docs say we must pass 0xAA as the data byte. */
+ lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
+}
+
+static int lm8323_configure(struct lm8323_chip *lm)
+{
+ int keysize = (lm->size_x << 4) | lm->size_y;
+ int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
+ int debounce = lm->debounce_time >> 2;
+ int active = lm->active_time >> 2;
+
+ /*
+ * Active time must be greater than the debounce time: if it's
+ * a close-run thing, give ourselves a 12ms buffer.
+ */
+ if (debounce >= active)
+ active = debounce + 3;
+
+ lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
+ lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
+ lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
+ lm8323_set_active_time(lm, lm->active_time);
+ lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
+ lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
+ lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
+
+ /*
+ * Not much we can do about errors at this point, so just hope
+ * for the best.
+ */
+
+ return 0;
+}
+
+/*
+ * Bottom half: handle the interrupt by posting key events, or dealing with
+ * errors appropriately.
+ */
+static void lm8323_work(struct work_struct *work)
+{
+ struct lm8323_chip *lm = work_to_lm8323(work);
+ u8 ints;
+
+ mutex_lock(&lm->lock);
+
+ while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
+ if (likely(ints & INT_KEYPAD))
+ process_keys(lm);
+ if (ints & INT_ROTATOR) {
+ /* We don't currently support the rotator. */
+ debug(&lm->client->dev, "rotator fired\n");
+ }
+ if (ints & INT_ERROR) {
+ debug(&lm->client->dev, "error!\n");
+ lm8323_process_error(lm);
+ }
+ if (ints & INT_NOINIT) {
+ dev_err(&lm->client->dev, "chip lost config; "
+ "reinitialising\n");
+ lm8323_configure(lm);
+ }
+ if (ints & INT_PWM1)
+ debug(&lm->client->dev, "pwm1 engine completed\n");
+ if (ints & INT_PWM2)
+ debug(&lm->client->dev, "pwm2 engine completed\n");
+ if (ints & INT_PWM3)
+ debug(&lm->client->dev, "pwm3 engine completed\n");
+ }
+
+ mutex_unlock(&lm->lock);
+}
+
+/*
+ * We cannot use I2C in interrupt context, so we just schedule work.
+ */
+static irqreturn_t lm8323_irq(int irq, void *data)
+{
+ struct lm8323_chip *lm = data;
+
+ schedule_work(&lm->work);
+
+ return IRQ_HANDLED;
+}
+
+/*
+ * Read the chip ID.
+ */
+static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
+{
+ int bytes;
+
+ bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
+ if (unlikely(bytes != 2))
+ return -EIO;
+
+ return 0;
+}
+
+static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
+{
+ struct lm8323_chip *lm = pwm_to_lm8323(pwm);
+
+ lm8323_write(lm, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
+ (cmd & 0xff00) >> 8, cmd & 0x00ff);
+}
+
+/*
+ * Write a script into a given PWM engine, concluding with PWM_END.
+ * If 'keepalive' is specified, the engine will be kept running
+ * indefinitely.
+ */
+static void lm8323_write_pwm(struct lm8323_pwm *pwm, int keepalive,
+ int len, ...)
+{
+ struct lm8323_chip *lm = pwm_to_lm8323(pwm);
+ int i, cmd;
+ va_list ap;
+
+ /*
+ * If there are any scripts running at the moment, terminate them
+ * and make sure the duty cycle is as if it finished.
+ */
+ lm8323_write(lm, 2, LM8323_CMD_STOP_PWM, pwm->id);
+
+ va_start(ap, len);
+ for (i = 0; i < len; i++) {
+ cmd = va_arg(ap, int);
+ lm8323_write_pwm_one(pwm, i, cmd);
+ }
+ va_end(ap);
+
+ /* Wait for a trigger from any channel. This keeps the engine alive. */
+ if (keepalive)
+ lm8323_write_pwm_one(pwm, i++, PWM_WAIT_TRIG(0xe));
+ else
+ lm8323_write_pwm_one(pwm, i++, PWM_END(1));
+
+ lm8323_write(lm, 2, LM8323_CMD_START_PWM, pwm->id);
+}
+
+static void lm8323_pwm_work(struct work_struct *work)
+{
+ struct lm8323_pwm *pwm = work_to_pwm(work);
+ int div, perstep, steps, hz, direction, keepalive;
+
+ /* Do nothing if we're already at the requested level. */
+ if (pwm->desired_brightness == pwm->brightness)
+ return;
+
+ keepalive = (pwm->desired_brightness > 0);
+ direction = (pwm->desired_brightness > pwm->brightness);
+ steps = abs(pwm->desired_brightness - pwm->brightness);
+
+ /*
+ * Convert time (in ms) into a divisor (512 or 16 on a refclk of
+ * 32768Hz), and number of ticks per step.
+ */
+ if ((pwm->fade_time / steps) > (32768 / 512))
+ div = 512;
+ else
+ div = 16;
+
+ hz = 32768 / div;
+ if (pwm->fade_time < ((steps * 1000) / hz))
+ perstep = 1;
+ else
+ perstep = (hz * pwm->fade_time) / (steps * 1000);
+
+ if (perstep == 0)
+ perstep = 1;
+ else if (perstep > 63)
+ perstep = 63;
+
+ if (steps > 252) {
+ lm8323_write_pwm(pwm, keepalive, 3,
+ PWM_RAMP((div == 512), perstep, 126,
+ direction),
+ PWM_RAMP((div == 512), perstep, 126,
+ direction),
+ PWM_RAMP((div == 512), perstep, steps - 252,
+ direction));
+ } else if (steps > 126) {
+ lm8323_write_pwm(pwm, keepalive, 2,
+ PWM_RAMP((div == 512), perstep, 126,
+ direction),
+ PWM_RAMP((div == 512), perstep, steps - 126,
+ direction));
+ } else {
+ lm8323_write_pwm(pwm, keepalive, 1,
+ PWM_RAMP((div == 512), perstep, steps,
+ direction));
+ }
+
+ pwm->brightness = pwm->desired_brightness;
+}
+
+static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
+ enum led_brightness brightness)
+{
+ struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
+ struct lm8323_chip *lm = pwm_to_lm8323(pwm);
+
+ pwm->desired_brightness = brightness;
+
+ if (in_interrupt()) {
+ schedule_work(&pwm->work);
+ } else {
+ /*
+ * Schedule PWM work as usual unless we are going into suspend
+ */
+ mutex_lock(&lm->lock);
+ if (likely(!lm->pm_suspend))
+ schedule_work(&pwm->work);
+ else
+ lm8323_pwm_work(&pwm->work);
+ mutex_unlock(&lm->lock);
+ }
+}
+
+static ssize_t lm8323_pwm_show_time(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct led_classdev *led_cdev = dev_get_drvdata(dev);
+ struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
+
+ return sprintf(buf, "%d\n", pwm->fade_time);
+}
+
+static ssize_t lm8323_pwm_store_time(struct device *dev,
+ struct device_attribute *attr, const char *buf, size_t len)
+{
+ struct led_classdev *led_cdev = dev_get_drvdata(dev);
+ struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
+ int ret;
+ int time;
+
+ ret = strict_strtoul(buf, 10, &time);
+ /* Numbers only, please. */
+ if (ret)
+ return -EINVAL;
+
+ pwm->fade_time = time;
+
+ return strlen(buf);
+}
+static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
+
+static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
+ const char *name)
+{
+ struct lm8323_pwm *pwm = NULL;
+
+ BUG_ON(id > 3);
+
+ switch (id) {
+ case 1:
+ pwm = &lm->pwm1;
+ break;
+ case 2:
+ pwm = &lm->pwm2;
+ break;
+ case 3:
+ pwm = &lm->pwm3;
+ break;
+ }
+
+ pwm->id = id;
+ pwm->fade_time = 0;
+ pwm->brightness = 0;
+ pwm->desired_brightness = 0;
+ if (name) {
+ pwm->cdev.name = name;
+ pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
+ if (led_classdev_register(dev, &pwm->cdev) < 0) {
+ dev_err(dev, "couldn't register PWM %d\n", id);
+ return -1;
+ }
+ if (device_create_file(pwm->cdev.dev,
+ &dev_attr_time) < 0) {
+ dev_err(dev, "couldn't register time attribute\n");
+ led_classdev_unregister(&pwm->cdev);
+ return -1;
+ }
+ INIT_WORK(&pwm->work, lm8323_pwm_work);
+ pwm->enabled = 1;
+ } else {
+ pwm->enabled = 0;
+ }
+
+ return 0;
+}
+
+static struct i2c_driver lm8323_i2c_driver;
+
+static ssize_t lm8323_show_disable(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct lm8323_chip *lm = dev_get_drvdata(dev);
+
+ return sprintf(buf, "%u\n", !lm->kp_enabled);
+}
+
+static ssize_t lm8323_set_disable(struct device *dev,
+ struct device_attribute *attr,
+ const char *buf, size_t count)
+{
+ struct lm8323_chip *lm = dev_get_drvdata(dev);
+ int ret;
+ int i;
+
+ i = strict_strtoul(buf, 10, &ret);
+
+ mutex_lock(&lm->lock);
+ lm->kp_enabled = !i;
+ mutex_unlock(&lm->lock);
+
+ return count;
+}
+static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
+
+static int lm8323_probe(struct i2c_client *client)
+{
+ struct input_dev *idev;
+ struct lm8323_chip *lm;
+ int i, err = 0;
+ unsigned long tmo;
+ u8 data[2];
+
+ lm = kzalloc(sizeof *lm, GFP_KERNEL);
+ if (!lm)
+ return -ENOMEM;
+
+ i2c_set_clientdata(client, lm);
+ lm->client = client;
+ lm8323_pdata = client->dev.platform_data;
+ if (!lm8323_pdata)
+ return -EINVAL; /* ? */
+
+ lm->size_x = lm8323_pdata->size_x;
+ if (lm->size_x == 0) {
+ lm->size_x = 8;
+ } else if (lm->size_x > 8) {
+ dev_err(&client->dev, "invalid x size %d specified\n",
+ lm->size_x);
+ lm->size_x = 8;
+ }
+
+ lm->size_y = lm8323_pdata->size_y;
+ if (lm->size_y == 0) {
+ lm->size_y = 12;
+ } else if (lm->size_y > 12) {
+ dev_err(&client->dev, "invalid y size %d specified\n",
+ lm->size_y);
+ lm->size_x = 12;
+ }
+
+ debug(&c->dev, "Keypad size: %d x %d\n", lm->size_x, lm->size_y);
+
+ lm->debounce_time = lm8323_pdata->debounce_time;
+ if (lm->debounce_time == 0) /* Default. */
+ lm->debounce_time = 12;
+ else if (lm->debounce_time == -1) /* Disable debounce. */
+ lm->debounce_time = 0;
+
+ lm->active_time = lm8323_pdata->active_time;
+ if (lm->active_time == 0) /* Default. */
+ lm->active_time = 500;
+ else if (lm->active_time == -1) /* Disable sleep. */
+ lm->active_time = 0;
+
+ lm8323_reset(lm);
+
+ /* Nothing's set up to service the IRQ yet, so just spin for max.
+ * 100ms until we can configure. */
+ tmo = jiffies + msecs_to_jiffies(100);
+ while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
+ if (data[0] & INT_NOINIT)
+ break;
+
+ if (time_after(jiffies, tmo)) {
+ dev_err(&client->dev,
+ "timeout waiting for initialisation\n");
+ break;
+ }
+
+ msleep(1);
+ }
+ lm8323_configure(lm);
+
+ /* If a true probe check the device */
+ if (lm8323_read_id(lm, data) != 0) {
+ dev_err(&client->dev, "device not found\n");
+ err = -ENODEV;
+ goto fail2;
+ }
+
+ if (init_pwm(lm, 1, &client->dev, lm8323_pdata->pwm1_name) < 0)
+ goto fail3;
+ if (init_pwm(lm, 2, &client->dev, lm8323_pdata->pwm2_name) < 0)
+ goto fail4;
+ if (init_pwm(lm, 3, &client->dev, lm8323_pdata->pwm3_name) < 0)
+ goto fail5;
+
+ lm->irq = lm8323_pdata->irq_gpio;
+ debug(&c->dev, "IRQ: %d\n", lm->irq);
+
+ mutex_init(&lm->lock);
+ INIT_WORK(&lm->work, lm8323_work);
+
+ err = request_irq(client->irq, lm8323_irq,
+ IRQF_TRIGGER_FALLING | IRQF_DISABLED |
+ IRQF_SAMPLE_RANDOM, DRIVER_NAME, lm);
+ if (err) {
+ dev_err(&client->dev, "could not get IRQ %d\n", lm->irq);
+ goto fail6;
+ }
+
+ set_irq_wake(lm->irq, 1);
+
+ lm->kp_enabled = 1;
+ err = device_create_file(&client->dev, &dev_attr_disable_kp);
+ if (err < 0)
+ goto fail7;
+
+ idev = input_allocate_device();
+ if (idev == NULL) {
+ err = -ENOMEM;
+ goto fail8;
+ }
+
+ if (lm8323_pdata->name)
+ idev->name = lm8323_pdata->name;
+ else
+ idev->name = "LM8323 keypad";
+ snprintf(lm->phys, sizeof(lm->phys), "%s/input-kp", client->dev.bus_id);
+ idev->phys = lm->phys;
+
+ lm->keys_down = 0;
+ idev->evbit[0] = BIT(EV_KEY);
+ for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
+ if (lm8323_pdata->keymap[i] > 0)
+ set_bit(lm8323_pdata->keymap[i], idev->keybit);
+
+ lm->keymap[i] = lm8323_pdata->keymap[i];
+ }
+
+ if (lm8323_pdata->repeat)
+ set_bit(EV_REP, idev->evbit);
+
+ lm->idev = idev;
+ if (input_register_device(idev)) {
+ dev_dbg(&client->dev, "error registering input device\n");
+ goto fail8;
+ }
+
+ return 0;
+
+fail8:
+ device_remove_file(&client->dev, &dev_attr_disable_kp);
+fail7:
+ free_irq(lm->irq, lm);
+fail6:
+ if (lm->pwm3.enabled)
+ led_classdev_unregister(&lm->pwm3.cdev);
+fail5:
+ if (lm->pwm2.enabled)
+ led_classdev_unregister(&lm->pwm2.cdev);
+fail4:
+ if (lm->pwm1.enabled)
+ led_classdev_unregister(&lm->pwm1.cdev);
+fail3:
+fail2:
+ kfree(lm);
+ return err;
+}
+
+static int lm8323_remove(struct i2c_client *client)
+{
+ struct lm8323_chip *lm = i2c_get_clientdata(client);
+
+ free_irq(lm->irq, lm);
+ device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
+
+ return 0;
+}
+
+/*
+ * We don't need to explicitly suspend the chip, as it already switches off
+ * when there's no activity.
+ */
+static int lm8323_suspend(struct i2c_client *client, pm_message_t mesg)
+{
+ struct lm8323_chip *lm = i2c_get_clientdata(client);
+
+ set_irq_wake(lm->irq, 0);
+ disable_irq(lm->irq);
+
+ mutex_lock(&lm->lock);
+ lm->pm_suspend = 1;
+ mutex_unlock(&lm->lock);
+
+ if (lm->pwm1.enabled)
+ led_classdev_suspend(&lm->pwm1.cdev);
+ if (lm->pwm2.enabled)
+ led_classdev_suspend(&lm->pwm2.cdev);
+ if (lm->pwm3.enabled)
+ led_classdev_suspend(&lm->pwm3.cdev);
+
+ return 0;
+}
+
+static int lm8323_resume(struct i2c_client *client)
+{
+ struct lm8323_chip *lm = i2c_get_clientdata(client);
+
+ mutex_lock(&lm->lock);
+ lm->pm_suspend = 0;
+ mutex_unlock(&lm->lock);
+
+ if (lm->pwm1.enabled)
+ led_classdev_resume(&lm->pwm1.cdev);
+ if (lm->pwm2.enabled)
+ led_classdev_resume(&lm->pwm2.cdev);
+ if (lm->pwm3.enabled)
+ led_classdev_resume(&lm->pwm3.cdev);
+
+ enable_irq(lm->irq);
+ set_irq_wake(lm->irq, 1);
+
+ return 0;
+}
+
+static struct i2c_driver lm8323_i2c_driver = {
+ .driver = {
+ .name = DRIVER_NAME,
+ },
+ .probe = lm8323_probe,
+ .remove = __exit_p(lm8323_remove),
+ .suspend = lm8323_suspend,
+ .resume = lm8323_resume,
+};
+
+static int __init lm8323_init(void)
+{
+ return i2c_add_driver(&lm8323_i2c_driver);
+}
+
+static void __exit lm8323_exit(void)
+{
+ i2c_del_driver(&lm8323_i2c_driver);
+}
+
+MODULE_AUTHOR("Daniel Stone");
+MODULE_DESCRIPTION("LM8323 keypad driver");
+MODULE_LICENSE("GPL");
+
+module_init(lm8323_init);
+module_exit(lm8323_exit);