]> pilppa.com Git - linux-2.6-omap-h63xx.git/commitdiff
MTD: NAND: Add omap support for 2K page nand
authorsshahrom@micron.com <sshahrom@micron.com>
Wed, 28 Nov 2007 21:48:12 +0000 (13:48 -0800)
committerTony Lindgren <tony@atomide.com>
Wed, 28 Nov 2007 21:48:12 +0000 (13:48 -0800)
Add support for 2k Page nand with Enabled HW ECC on omap2430
v4.0. and v5. It has been Tested with Micron Nand.

Signed-off-by: Shahrom Sharif-Kashani <sshahrom@micron.com>
Moved defines from nand.h to omap2.c, cleaned up spacing and
comments a bit.

Signed-off-by: Tony Lindgren <tony@atomide.com>
drivers/mtd/nand/Kconfig
drivers/mtd/nand/Makefile
drivers/mtd/nand/omap2.c [new file with mode: 0644]
include/asm-arm/arch-omap/nand.h [new file with mode: 0644]

index 4ac8c0f90184ab6abbce30d6c7a52da447352811..d004a34a0ab559a30e5971c2d657dc051032ec4d 100644 (file)
@@ -69,6 +69,12 @@ config MTD_NAND_AMS_DELTA
        help
          Support for NAND flash on Amstrad E3 (Delta).
 
+config MTD_NAND_OMAP2
+       tristate "NAND Flash device on OMAP 2420H4/2430SDP boards"
+       depends on (ARM && ARCH_OMAP2 && MTD_NAND)
+       help
+          Support for NAND flash on Texas Instruments 2430SDP/2420H4 platforms.
+
 config MTD_NAND_OMAP
        tristate "NAND Flash device on OMAP H3/H2/P2 boards"
        depends on ARM && ARCH_OMAP1 && MTD_NAND && (MACH_OMAP_H2 || MACH_OMAP_H3 || MACH_OMAP_PERSEUS2)
index ee73e028330d34e2d00807b365aba04b5ee9f505..46835158a9705ce3d7dd9e652e3886b0f6539e60 100644 (file)
@@ -25,6 +25,7 @@ obj-$(CONFIG_MTD_NAND_NANDSIM)                += nandsim.o
 obj-$(CONFIG_MTD_NAND_CS553X)          += cs553x_nand.o
 obj-$(CONFIG_MTD_NAND_NDFC)            += ndfc.o
 obj-$(CONFIG_MTD_NAND_OMAP)            += omap-nand-flash.o
+obj-$(CONFIG_MTD_NAND_OMAP2)           += omap2.o
 obj-$(CONFIG_MTD_NAND_OMAP_HW)         += omap-hw.o
 obj-$(CONFIG_MTD_NAND_AT91)            += at91_nand.o
 obj-$(CONFIG_MTD_NAND_CM_X270)         += cmx270_nand.o
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c
new file mode 100644 (file)
index 0000000..950a495
--- /dev/null
@@ -0,0 +1,699 @@
+/*
+ * drivers/mtd/nand/omap2.c
+ *
+ * Copyright (c) 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
+ * Copyright (c) 2004 Micron Technology Inc.
+ * Copyright (c) 2004 David Brownell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/delay.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/io.h>
+
+#include <asm/dma.h>
+
+#include <asm/arch/gpmc.h>
+#include <asm/arch/nand.h>
+
+#define GPMC_IRQ_STATUS                0x18
+#define GPMC_ECC_CONFIG                0x1F4
+#define GPMC_ECC_CONTROL       0x1F8
+#define GPMC_ECC_SIZE_CONFIG   0x1FC
+#define GPMC_ECC1_RESULT       0x200
+
+#define        DRIVER_NAME     "omap2-nand"
+#define        NAND_IO_SIZE    SZ_4K
+
+#define        NAND_WP_ON      1
+#define        NAND_WP_OFF     0
+#define NAND_WP_BIT    0x00000010
+#define WR_RD_PIN_MONITORING   0x00600000
+
+#define        GPMC_BUF_FULL   0x00000001
+#define        GPMC_BUF_EMPTY  0x00000000
+
+#define NAND_Ecc_P1e           (1 << 0)
+#define NAND_Ecc_P2e           (1 << 1)
+#define NAND_Ecc_P4e           (1 << 2)
+#define NAND_Ecc_P8e           (1 << 3)
+#define NAND_Ecc_P16e          (1 << 4)
+#define NAND_Ecc_P32e          (1 << 5)
+#define NAND_Ecc_P64e          (1 << 6)
+#define NAND_Ecc_P128e         (1 << 7)
+#define NAND_Ecc_P256e         (1 << 8)
+#define NAND_Ecc_P512e         (1 << 9)
+#define NAND_Ecc_P1024e                (1 << 10)
+#define NAND_Ecc_P2048e                (1 << 11)
+
+#define NAND_Ecc_P1o           (1 << 16)
+#define NAND_Ecc_P2o           (1 << 17)
+#define NAND_Ecc_P4o           (1 << 18)
+#define NAND_Ecc_P8o           (1 << 19)
+#define NAND_Ecc_P16o          (1 << 20)
+#define NAND_Ecc_P32o          (1 << 21)
+#define NAND_Ecc_P64o          (1 << 22)
+#define NAND_Ecc_P128o         (1 << 23)
+#define NAND_Ecc_P256o         (1 << 24)
+#define NAND_Ecc_P512o         (1 << 25)
+#define NAND_Ecc_P1024o                (1 << 26)
+#define NAND_Ecc_P2048o                (1 << 27)
+
+#define TF(value)      (value ? 1 : 0)
+
+#define P2048e(a)      (TF(a & NAND_Ecc_P2048e)        << 0)
+#define P2048o(a)      (TF(a & NAND_Ecc_P2048o)        << 1)
+#define P1e(a)         (TF(a & NAND_Ecc_P1e)           << 2)
+#define P1o(a)         (TF(a & NAND_Ecc_P1o)           << 3)
+#define P2e(a)         (TF(a & NAND_Ecc_P2e)           << 4)
+#define P2o(a)         (TF(a & NAND_Ecc_P2o)           << 5)
+#define P4e(a)         (TF(a & NAND_Ecc_P4e)           << 6)
+#define P4o(a)         (TF(a & NAND_Ecc_P4o)           << 7)
+
+#define P8e(a)         (TF(a & NAND_Ecc_P8e)           << 0)
+#define P8o(a)         (TF(a & NAND_Ecc_P8o)           << 1)
+#define P16e(a)                (TF(a & NAND_Ecc_P16e)          << 2)
+#define P16o(a)                (TF(a & NAND_Ecc_P16o)          << 3)
+#define P32e(a)                (TF(a & NAND_Ecc_P32e)          << 4)
+#define P32o(a)                (TF(a & NAND_Ecc_P32o)          << 5)
+#define P64e(a)                (TF(a & NAND_Ecc_P64e)          << 6)
+#define P64o(a)                (TF(a & NAND_Ecc_P64o)          << 7)
+
+#define P128e(a)       (TF(a & NAND_Ecc_P128e)         << 0)
+#define P128o(a)       (TF(a & NAND_Ecc_P128o)         << 1)
+#define P256e(a)       (TF(a & NAND_Ecc_P256e)         << 2)
+#define P256o(a)       (TF(a & NAND_Ecc_P256o)         << 3)
+#define P512e(a)       (TF(a & NAND_Ecc_P512e)         << 4)
+#define P512o(a)       (TF(a & NAND_Ecc_P512o)         << 5)
+#define P1024e(a)      (TF(a & NAND_Ecc_P1024e)        << 6)
+#define P1024o(a)      (TF(a & NAND_Ecc_P1024o)        << 7)
+
+#define P8e_s(a)       (TF(a & NAND_Ecc_P8e)           << 0)
+#define P8o_s(a)       (TF(a & NAND_Ecc_P8o)           << 1)
+#define P16e_s(a)      (TF(a & NAND_Ecc_P16e)          << 2)
+#define P16o_s(a)      (TF(a & NAND_Ecc_P16o)          << 3)
+#define P1e_s(a)       (TF(a & NAND_Ecc_P1e)           << 4)
+#define P1o_s(a)       (TF(a & NAND_Ecc_P1o)           << 5)
+#define P2e_s(a)       (TF(a & NAND_Ecc_P2e)           << 6)
+#define P2o_s(a)       (TF(a & NAND_Ecc_P2o)           << 7)
+
+#define P4e_s(a)       (TF(a & NAND_Ecc_P4e)           << 0)
+#define P4o_s(a)       (TF(a & NAND_Ecc_P4o)           << 1)
+
+#ifdef CONFIG_MTD_PARTITIONS
+static const char *part_probes[] = { "cmdlinepart", NULL };
+#endif
+
+static int hw_ecc = 1;
+
+/* new oob placement block for use with hardware ecc generation */
+static struct nand_ecclayout omap_hw_eccoob = {
+       .eccbytes = 12,
+       .eccpos = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
+       .oobfree = {{16, 32}, {33, 63} },
+};
+
+struct omap_nand_info {
+       struct nand_hw_control          controller;
+       struct nand_platform_data       *pdata;
+       struct mtd_info                 mtd;
+       struct mtd_partition            *parts;
+       struct nand_chip                nand;
+       struct platform_device          *pdev;
+
+       int                             gpmc_cs;
+       unsigned long                   phys_base;
+       void __iomem                    *gpmc_cs_baseaddr;
+       void __iomem                    *gpmc_baseaddr;
+};
+static void omap_nand_wp(struct mtd_info *mtd, int mode)
+{
+       struct omap_nand_info *info = container_of(mtd,
+                                               struct omap_nand_info, mtd);
+
+       unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG);
+
+       if (mode)
+               config &= ~(NAND_WP_BIT);       /* WP is ON */
+       else
+               config |= (NAND_WP_BIT);        /* WP is OFF */
+
+       __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG));
+}
+
+/*
+ * hardware specific access to control-lines
+ * NOTE: boards may use different bits for these!!
+ *
+ * ctrl:
+ * NAND_NCE: bit 0 - don't care
+ * NAND_CLE: bit 1 -> Command Latch
+ * NAND_ALE: bit 2 -> Address Latch
+ */
+static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+       struct omap_nand_info *info = container_of(mtd,
+                                       struct omap_nand_info, mtd);
+       switch (ctrl) {
+       case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
+               info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_COMMAND;
+               info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_DATA;
+               break;
+
+       case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
+               info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_ADDRESS;
+               info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_DATA;
+               break;
+
+       case NAND_CTRL_CHANGE | NAND_NCE:
+               info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_DATA;
+               info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
+                                               GPMC_CS_NAND_DATA;
+               break;
+       }
+
+       if (cmd != NAND_CMD_NONE)
+               __raw_writeb(cmd, info->nand.IO_ADDR_W);
+}
+
+/*
+* omap_read_buf - read data from NAND controller into buffer
+* @mtd: MTD device structure
+* @buf: buffer to store date
+* @len: number of bytes to read
+*/
+static void omap_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+       struct omap_nand_info *info = container_of(mtd,
+                                       struct omap_nand_info, mtd);
+       u16 *p = (u16 *) buf;
+
+       len >>= 1;
+
+       while (len--)
+               *p++ = cpu_to_le16(readw(info->nand.IO_ADDR_R));
+}
+
+/*
+* omap_write_buf - write buffer to NAND controller
+* @mtd: MTD device structure
+* @buf: data buffer
+* @len: number of bytes to write
+*/
+static void omap_write_buf(struct mtd_info *mtd, const u_char * buf, int len)
+{
+       struct omap_nand_info *info = container_of(mtd,
+                                               struct omap_nand_info, mtd);
+       u16 *p = (u16 *) buf;
+
+       len >>= 1;
+
+       while (len--) {
+               writew(cpu_to_le16(*p++), info->nand.IO_ADDR_W);
+
+               while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr +
+                                               GPMC_STATUS) & GPMC_BUF_FULL));
+       }
+}
+/*
+ * omap_verify_buf - Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ */
+static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
+{
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       u16 *p = (u16 *) buf;
+
+       len >>= 1;
+
+       while (len--) {
+
+               if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
+                       return -EFAULT;
+       }
+
+       return 0;
+}
+
+static void omap_hwecc_init(struct mtd_info *mtd)
+{
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       unsigned long val = 0x0;
+
+       /* Read from ECC Control Register */
+       val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+       /* Clear all ECC | Enable Reg1 */
+       val = ((0x00000001<<8) | 0x00000001);
+       __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+
+       /* Read from ECC Size Config Register */
+       val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
+       /* ECCSIZE1=512 | ECCSIZE0=8bytes | Select eccResultsize[0123] */
+       val = ((0x000000FF<<22) | (0x00000003<<12) | (0x0000000F));
+       __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
+
+
+}
+
+/*
+ * This function will generate true ECC value, which can be used
+ * when correcting data read from NAND flash memory core
+ */
+static void gen_true_ecc(u8 *ecc_buf)
+{
+       u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
+               ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
+
+       ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
+                       P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
+       ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
+                       P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
+       ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
+                       P1e(tmp) | P2048o(tmp) | P2048e(tmp));
+}
+
+/*
+ * This function compares two ECC's and indicates if there is an error.
+ * If the error can be corrected it will be corrected to the buffer
+ */
+static int omap_compare_ecc(u8 *ecc_data1,     /* read from NAND memory */
+                           u8 *ecc_data2,      /* read from register */
+                           u8 *page_data)
+{
+       uint    i;
+       u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
+       u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
+       u8      ecc_bit[24];
+       u8      ecc_sum = 0;
+       u8      find_bit = 0;
+       uint    find_byte = 0;
+       int     isEccFF;
+
+       isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
+
+       gen_true_ecc(ecc_data1);
+       gen_true_ecc(ecc_data2);
+
+       for (i = 0; i <= 2; i++) {
+               *(ecc_data1 + i) = ~(*(ecc_data1 + i));
+               *(ecc_data2 + i) = ~(*(ecc_data2 + i));
+       }
+
+       for (i = 0; i < 8; i++) {
+               tmp0_bit[i]     = *ecc_data1 % 2;
+               *ecc_data1      = *ecc_data1 / 2;
+       }
+
+       for (i = 0; i < 8; i++) {
+               tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
+               *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
+       }
+
+       for (i = 0; i < 8; i++) {
+               tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
+               *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
+       }
+
+       for (i = 0; i < 8; i++) {
+               comp0_bit[i]     = *ecc_data2 % 2;
+               *ecc_data2       = *ecc_data2 / 2;
+       }
+
+       for (i = 0; i < 8; i++) {
+               comp1_bit[i]     = *(ecc_data2 + 1) % 2;
+               *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
+       }
+
+       for (i = 0; i < 8; i++) {
+               comp2_bit[i]     = *(ecc_data2 + 2) % 2;
+               *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
+       }
+
+       for (i = 0; i < 6; i++)
+               ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
+
+       for (i = 0; i < 8; i++)
+               ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
+
+       for (i = 0; i < 8; i++)
+               ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
+
+       ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
+       ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
+
+       for (i = 0; i < 24; i++)
+               ecc_sum += ecc_bit[i];
+
+       switch (ecc_sum) {
+       case 0:
+               /* Not reached because this function is not called if
+                *  ECC values are equal
+                */
+               return 0;
+
+       case 1:
+               /* Uncorrectable error */
+               DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
+               return -1;
+
+       case 11:
+               /* UN-Correctable error */
+               DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
+               return -1;
+
+       case 12:
+               /* Correctable error */
+               find_byte = (ecc_bit[23] << 8) +
+                           (ecc_bit[21] << 7) +
+                           (ecc_bit[19] << 6) +
+                           (ecc_bit[17] << 5) +
+                           (ecc_bit[15] << 4) +
+                           (ecc_bit[13] << 3) +
+                           (ecc_bit[11] << 2) +
+                           (ecc_bit[9]  << 1) +
+                           ecc_bit[7];
+
+               find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
+
+               DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
+                               "offset: %d, bit: %d\n", find_byte, find_bit);
+
+               page_data[find_byte] ^= (1 << find_bit);
+
+               return 0;
+       default:
+               if (isEccFF) {
+                       if (ecc_data2[0] == 0 &&
+                           ecc_data2[1] == 0 &&
+                           ecc_data2[2] == 0)
+                               return 0;
+               }
+               DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
+               return -1;
+       }
+}
+
+static int omap_correct_data(struct mtd_info *mtd, u_char * dat,
+                               u_char * read_ecc, u_char * calc_ecc)
+{
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       int blockCnt = 0, i = 0, ret = 0;
+
+       /* Ex NAND_ECC_HW12_2048 */
+       if ((info->nand.ecc.mode == NAND_ECC_HW) &&
+                       (info->nand.ecc.size  == 2048))
+               blockCnt = 4;
+       else
+               blockCnt = 1;
+
+       for (i = 0; i < blockCnt; i++) {
+               if (memcmp(read_ecc, calc_ecc, 3) != 0) {
+                       ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
+                       if (ret < 0) return ret;
+               }
+               read_ecc += 3;
+               calc_ecc += 3;
+               dat      += 512;
+       }
+       return 0;
+}
+
+/*
+** Generate non-inverted ECC bytes.
+**
+** Using noninverted ECC can be considered ugly since writing a blank
+** page ie. padding will clear the ECC bytes. This is no problem as long
+** nobody is trying to write data on the seemingly unused page.
+**
+** Reading an erased page will produce an ECC mismatch between
+** generated and read ECC bytes that has to be dealt with separately.
+*/
+static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+                               u_char *ecc_code)
+{
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       unsigned long val = 0x0;
+       unsigned long reg, n;
+
+       /* Ex NAND_ECC_HW12_2048 */
+       if ((info->nand.ecc.mode == NAND_ECC_HW) &&
+               (info->nand.ecc.size  == 2048))
+               n = 4;
+       else
+               n = 1;
+
+       /* Start Reading from HW ECC1_Result = 0x200 */
+       reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT);
+       while (n--) {
+               val = __raw_readl(reg);
+               *ecc_code++ = val;              /* P128e, ..., P1e */
+               *ecc_code++ = val >> 16;        /* P128o, ..., P1o */
+               /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
+               *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
+               reg += 4;
+       }
+
+       return 0;
+} /* omap_calculate_ecc */
+
+static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG);
+
+       switch (mode) {
+       case NAND_ECC_READ    :
+               __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+               /* ECC 16 bit col) | ( CS 0 )  | ECC Enable */
+               val = (1 << 7) | (0x0) | (0x1) ;
+               break;
+       case NAND_ECC_READSYN :
+               __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+               /* ECC 16 bit col) | ( CS 0 )  | ECC Enable */
+               val = (1 << 7) | (0x0) | (0x1) ;
+               break;
+       case NAND_ECC_WRITE   :
+               __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
+               /* ECC 16 bit col) | ( CS 0 )  | ECC Enable */
+               val = (1 << 7) | (0x0) | (0x1) ;
+               break;
+       default:
+               DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n",
+                                       mode);
+               break;
+       }
+
+       __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG);
+}
+
+static int omap_dev_ready(struct mtd_info *mtd)
+{
+       struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
+                                                       mtd);
+       unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS);
+
+       if ((val & 0x100) == 0x100) {
+               /* Clear IRQ Interrupt */
+               val |= 0x100;
+               val &= ~(0x0);
+               __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS);
+       } else {
+               unsigned int cnt = 0;
+               while (cnt++ < 0x1FF) {
+                       if  ((val & 0x100) == 0x100)
+                               return 0;
+                       val = __raw_readl(info->gpmc_baseaddr +
+                                                       GPMC_IRQ_STATUS);
+               }
+       }
+
+       return 1;
+}
+
+static int __devinit omap_nand_probe(struct platform_device *pdev)
+{
+       struct omap_nand_info           *info;
+       struct omap_nand_platform_data  *pdata;
+       int                             err;
+       unsigned long val;
+
+
+       pdata = pdev->dev.platform_data;
+       if (pdata == NULL) {
+               dev_err(&pdev->dev, "platform data missing\n");
+               return -ENODEV;
+       }
+
+       info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
+       if (!info) return -ENOMEM;
+
+       platform_set_drvdata(pdev, info);
+
+       spin_lock_init(&info->controller.lock);
+       init_waitqueue_head(&info->controller.wq);
+
+       info->pdev = pdev;
+
+       info->gpmc_cs           = pdata->cs;
+       info->gpmc_baseaddr     = pdata->gpmc_baseaddr;
+       info->gpmc_cs_baseaddr  = pdata->gpmc_cs_baseaddr;
+
+       info->mtd.priv          = &info->nand;
+       info->mtd.name          = pdev->dev.bus_id;
+       info->mtd.owner         = THIS_MODULE;
+
+       err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base);
+       if (err < 0) {
+               dev_err(&pdev->dev, "Cannot request GPMC CS\n");
+               goto out_free_info;
+       }
+
+       /* Enable RD PIN Monitoring Reg */
+       val  = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1);
+       val |= WR_RD_PIN_MONITORING;
+       gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val);
+
+       val  = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7);
+       val &= ~(0xf << 8);
+       val |=  (0xc & 0xf) << 8;
+       gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val);
+
+       if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
+                               pdev->dev.driver->name)) {
+               err = -EBUSY;
+               goto out_free_cs;
+       }
+
+       info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
+       if (!info->nand.IO_ADDR_R) {
+               err = -ENOMEM;
+               goto out_release_mem_region;
+       }
+       info->nand.controller = &info->controller;
+
+       info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
+       info->nand.cmd_ctrl  = omap_hwcontrol;
+
+       info->nand.read_buf   = omap_read_buf;
+       info->nand.write_buf  = omap_write_buf;
+       info->nand.verify_buf = omap_verify_buf;
+
+       info->nand.dev_ready  = omap_dev_ready;
+       info->nand.chip_delay = 0;
+
+       /* Options */
+       info->nand.options   = NAND_BUSWIDTH_16;
+       info->nand.options  |= NAND_SKIP_BBTSCAN;
+
+       if (hw_ecc) {
+               /* init HW ECC */
+               omap_hwecc_init(&info->mtd);
+
+               info->nand.ecc.calculate = omap_calculate_ecc;
+               info->nand.ecc.hwctl     = omap_enable_hwecc;
+               info->nand.ecc.correct   = omap_correct_data;
+               info->nand.ecc.mode      = NAND_ECC_HW;
+               info->nand.ecc.bytes     = 12;
+               info->nand.ecc.size      = 2048;
+               info->nand.ecc.layout    = &omap_hw_eccoob;
+
+       } else {
+               info->nand.ecc.mode = NAND_ECC_SOFT;
+       }
+
+
+       /* DIP switches on some boards change between 8 and 16 bit
+        * bus widths for flash.  Try the other width if the first try fails.
+        */
+       if (nand_scan(&info->mtd, 1)) {
+               info->nand.options ^= NAND_BUSWIDTH_16;
+               if (nand_scan(&info->mtd, 1)) {
+                       err = -ENXIO;
+                       goto out_release_mem_region;
+               }
+       }
+
+#ifdef CONFIG_MTD_PARTITIONS
+       err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
+       if (err > 0)
+               add_mtd_partitions(&info->mtd, info->parts, err);
+       else if (err < 0 && pdata->parts)
+               add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
+       else
+#endif
+               add_mtd_device(&info->mtd);
+
+       omap_nand_wp(&info->mtd, NAND_WP_OFF);
+
+       platform_set_drvdata(pdev, &info->mtd);
+
+       return 0;
+
+out_release_mem_region:
+       release_mem_region(info->phys_base, NAND_IO_SIZE);
+out_free_cs:
+       gpmc_cs_free(info->gpmc_cs);
+out_free_info:
+       kfree(info);
+
+       return err;
+}
+
+static int omap_nand_remove(struct platform_device *pdev)
+{
+       struct mtd_info *mtd = platform_get_drvdata(pdev);
+       struct omap_nand_info *info = mtd->priv;
+
+       platform_set_drvdata(pdev, NULL);
+       /* Release NAND device, its internal structures and partitions */
+       nand_release(&info->mtd);
+       iounmap(info->nand.IO_ADDR_R);
+       kfree(&info->mtd);
+       return 0;
+}
+
+static struct platform_driver omap_nand_driver = {
+       .probe          = omap_nand_probe,
+       .remove         = omap_nand_remove,
+       .driver         = {
+               .name   = DRIVER_NAME,
+               .owner  = THIS_MODULE,
+       },
+};
+MODULE_ALIAS(DRIVER_NAME);
+
+static int __init omap_nand_init(void)
+{
+       printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
+       return platform_driver_register(&omap_nand_driver);
+}
+
+static void __exit omap_nand_exit(void)
+{
+       platform_driver_unregister(&omap_nand_driver);
+}
+
+module_init(omap_nand_init);
+module_exit(omap_nand_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
diff --git a/include/asm-arm/arch-omap/nand.h b/include/asm-arm/arch-omap/nand.h
new file mode 100644 (file)
index 0000000..5dd4e86
--- /dev/null
@@ -0,0 +1,22 @@
+/*
+ * include/asm-arm/arch-omap/nand.h
+ *
+ * Copyright (C) 2006 Micron Technology Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/mtd/partitions.h>
+
+struct omap_nand_platform_data {
+       int                     cs;
+       int                     gpio_irq;
+       struct mtd_partition    *parts;
+       int                     nr_parts;
+       int                     (*nand_setup)(void __iomem *);
+       int                     dma_channel;
+       void __iomem            *gpmc_cs_baseaddr;
+       void __iomem            *gpmc_baseaddr;
+};