--- /dev/null
+/*
+ * Flash memory support for various TI OMAP boards
+ *
+ * Copyright (C) 2001-2002 MontaVista Software Inc.
+ * Copyright (C) 2003-2004 Texas Instruments
+ * Copyright (C) 2004 Nokia Corporation
+ *
+ * Assembled using driver code copyright the companies above
+ * and written by David Brownell, Jian Zhang <jzhang@ti.com>,
+ * Tony Lindgren <tony@atomide.com> and others.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ *
+ * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
+ * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
+ * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
+ * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/device.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/ioport.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/partitions.h>
+
+#include <asm/io.h>
+#include <asm/hardware.h>
+#include <asm/mach-types.h>
+#include <asm/mach/flash.h>
+#include <asm/arch/tc.h>
+
+#ifdef CONFIG_MTD_PARTITIONS
+static const char *part_probes[] = { /* "RedBoot", */ "cmdlinepart", NULL };
+#endif
+
+struct omapflash_info {
+ struct mtd_partition *parts;
+ struct mtd_info *mtd;
+ struct map_info map;
+};
+
+static void omap_set_vpp(struct map_info *map, int enable)
+{
+ static int count;
+
+ if (enable) {
+ if (count++ == 0)
+ OMAP_EMIFS_CONFIG_REG |= OMAP_EMIFS_CONFIG_WP;
+ } else {
+ if (count && (--count == 0))
+ OMAP_EMIFS_CONFIG_REG &= ~OMAP_EMIFS_CONFIG_WP;
+ }
+}
+
+static int __devinit omapflash_probe(struct device *dev)
+{
+ int err;
+ struct omapflash_info *info;
+ struct platform_device *pdev = to_platform_device(dev);
+ struct flash_platform_data *pdata = pdev->dev.platform_data;
+ struct resource *res = pdev->resource;
+ unsigned long size = res->end - res->start + 1;
+
+ info = kmalloc(sizeof(struct omapflash_info), GFP_KERNEL);
+ if (!info)
+ return -ENOMEM;
+
+ memset(info, 0, sizeof(struct omapflash_info));
+
+ if (!request_mem_region(res->start, size, "flash")) {
+ err = -EBUSY;
+ goto out_free_info;
+ }
+
+ info->map.virt = ioremap(res->start, size);
+ if (!info->map.virt) {
+ err = -ENOMEM;
+ goto out_release_mem_region;
+ }
+ info->map.name = pdev->dev.bus_id;
+ info->map.phys = res->start;
+ info->map.size = size;
+ info->map.bankwidth = pdata->width;
+ info->map.set_vpp = omap_set_vpp;
+
+ simple_map_init(&info->map);
+ info->mtd = do_map_probe(pdata->map_name, &info->map);
+ if (!info->mtd) {
+ err = -EIO;
+ goto out_iounmap;
+ }
+ info->mtd->owner = THIS_MODULE;
+
+#ifdef CONFIG_MTD_PARTITIONS
+ err = parse_mtd_partitions(info->mtd, part_probes, &info->parts, 0);
+ if (err > 0)
+ add_mtd_partitions(info->mtd, info->parts, err);
+ else if (err < 0 && pdata->parts)
+ add_mtd_partitions(info->mtd, pdata->parts, pdata->nr_parts);
+ else
+#endif
+ add_mtd_device(info->mtd);
+
+ dev_set_drvdata(&pdev->dev, info);
+
+ return 0;
+
+out_iounmap:
+ iounmap(info->map.virt);
+out_release_mem_region:
+ release_mem_region(res->start, size);
+out_free_info:
+ kfree(info);
+
+ return err;
+}
+
+static int __devexit omapflash_remove(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct omapflash_info *info = dev_get_drvdata(&pdev->dev);
+
+ dev_set_drvdata(&pdev->dev, NULL);
+
+ if (info) {
+ if (info->parts) {
+ del_mtd_partitions(info->mtd);
+ kfree(info->parts);
+ } else
+ del_mtd_device(info->mtd);
+ map_destroy(info->mtd);
+ release_mem_region(info->map.phys, info->map.size);
+ iounmap((void __iomem *) info->map.virt);
+ kfree(info);
+ }
+
+ return 0;
+}
+
+static struct device_driver omapflash_driver = {
+ .name = "omapflash",
+ .bus = &platform_bus_type,
+ .probe = omapflash_probe,
+ .remove = __devexit_p(omapflash_remove),
+};
+
+static int __init omapflash_init(void)
+{
+ return driver_register(&omapflash_driver);
+}
+
+static void __exit omapflash_exit(void)
+{
+ driver_unregister(&omapflash_driver);
+}
+
+module_init(omapflash_init);
+module_exit(omapflash_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("MTD NOR map driver for TI OMAP boards");
+
--- /dev/null
+/*
+ * drivers/mtd/nand/omap-hw.c
+ *
+ * This is the MTD driver for OMAP 1710 internal HW nand controller.
+ *
+ * Copyright (C) 2004 Nokia Corporation
+ *
+ * Author: Jarkko Lavinen <jarkko.lavinen@nokia.com>
+ *
+ * Dma patches by Juha Yrjölä <juha.yrjola@nokia.com>
+ *
+ * $Id: omap-hw.c,v 1.1 2004/12/08 00:00:01 jlavi Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; see the file COPYING. If not, write to the Free Software
+ * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ */
+
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/types.h>
+#include <linux/wait.h>
+#include <linux/spinlock.h>
+#include <linux/interrupt.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/dma-mapping.h>
+
+#include <asm/io.h>
+
+#include <asm/arch/board.h>
+#include <asm/arch/dma.h>
+#include <asm/hardware/clock.h>
+
+#define NAND_BASE 0xfffbcc00
+#define NND_REVISION 0x00
+#define NND_ACCESS 0x04
+#define NND_ADDR_SRC 0x08
+#define NND_CTRL 0x10
+#define NND_MASK 0x14
+#define NND_STATUS 0x18
+#define NND_READY 0x1c
+#define NND_COMMAND 0x20
+#define NND_COMMAND_SEC 0x24
+#define NND_ECC_SELECT 0x28
+#define NND_ECC_START 0x2c
+#define NND_ECC_9 0x4c
+#define NND_RESET 0x50
+#define NND_FIFO 0x54
+#define NND_FIFOCTRL 0x58
+#define NND_PSC_CLK 0x5c
+#define NND_SYSTEST 0x60
+#define NND_SYSCFG 0x64
+#define NND_SYSSTATUS 0x68
+#define NND_FIFOTEST1 0x6c
+#define NND_FIFOTEST2 0x70
+#define NND_FIFOTEST3 0x74
+#define NND_FIFOTEST4 0x78
+#define NND_PSC1_CLK 0x8c
+#define NND_PSC2_CLK 0x90
+
+
+#define NND_CMD_READ1_LOWER 0x00
+#define NND_CMD_WRITE1_LOWER 0x00
+#define NND_CMD_READ1_UPPER 0x01
+#define NND_CMD_WRITE1_UPPER 0x01
+#define NND_CMD_PROGRAM_END 0x10
+#define NND_CMD_READ2_SPARE 0x50
+#define NND_CMD_WRITE2_SPARE 0x50
+#define NND_CMD_ERASE 0x60
+#define NND_CMD_STATUS 0x70
+#define NND_CMD_PROGRAM 0x80
+#define NND_CMD_READ_ID 0x90
+#define NND_CMD_ERASE_END 0xD0
+#define NND_CMD_RESET 0xFF
+
+
+#define NAND_Ecc_P1e (1 << 0)
+#define NAND_Ecc_P2e (1 << 1)
+#define NAND_Ecc_P4e (1 << 2)
+#define NAND_Ecc_P8e (1 << 3)
+#define NAND_Ecc_P16e (1 << 4)
+#define NAND_Ecc_P32e (1 << 5)
+#define NAND_Ecc_P64e (1 << 6)
+#define NAND_Ecc_P128e (1 << 7)
+#define NAND_Ecc_P256e (1 << 8)
+#define NAND_Ecc_P512e (1 << 9)
+#define NAND_Ecc_P1024e (1 << 10)
+#define NAND_Ecc_P2048e (1 << 11)
+
+#define NAND_Ecc_P1o (1 << 16)
+#define NAND_Ecc_P2o (1 << 17)
+#define NAND_Ecc_P4o (1 << 18)
+#define NAND_Ecc_P8o (1 << 19)
+#define NAND_Ecc_P16o (1 << 20)
+#define NAND_Ecc_P32o (1 << 21)
+#define NAND_Ecc_P64o (1 << 22)
+#define NAND_Ecc_P128o (1 << 23)
+#define NAND_Ecc_P256o (1 << 24)
+#define NAND_Ecc_P512o (1 << 25)
+#define NAND_Ecc_P1024o (1 << 26)
+#define NAND_Ecc_P2048o (1 << 27)
+
+#define TF(value) (value ? 1 : 0)
+
+#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0 )
+#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1 )
+#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2 )
+#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3 )
+#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4 )
+#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5 )
+#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6 )
+#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7 )
+
+#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0 )
+#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1 )
+#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2 )
+#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3 )
+#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4 )
+#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5 )
+#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6 )
+#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7 )
+
+#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0 )
+#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1 )
+#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2 )
+#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3 )
+#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4 )
+#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5 )
+#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6 )
+#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7 )
+
+#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0 )
+#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1 )
+#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2 )
+#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3 )
+#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4 )
+#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5 )
+#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6 )
+#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7 )
+
+#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0 )
+#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1 )
+
+extern struct nand_oobinfo jffs2_oobinfo;
+
+/*
+ * MTD structure for OMAP board
+ */
+static struct mtd_info *omap_mtd;
+static struct clk *omap_nand_clk;
+static unsigned long omap_nand_base = io_p2v(NAND_BASE);
+
+
+static inline u32 nand_read_reg(int idx)
+{
+ return __raw_readl(omap_nand_base + idx);
+}
+
+static inline void nand_write_reg(int idx, u32 val)
+{
+ __raw_writel(val, omap_nand_base + idx);
+}
+
+static inline u8 nand_read_reg8(int idx)
+{
+ return __raw_readb(omap_nand_base + idx);
+}
+
+static inline void nand_write_reg8(int idx, u8 val)
+{
+ __raw_writeb(val, omap_nand_base + idx);
+}
+
+static void omap_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ u32 l;
+
+ switch(chip) {
+ case -1:
+ l = nand_read_reg(NND_CTRL);
+ l |= (1 << 8) | (1 << 10) | (1 << 12) | (1 << 14);
+ nand_write_reg(NND_CTRL, l);
+ break;
+ case 0:
+ /* Also CS1, CS2, CS4 would be available */
+ l = nand_read_reg(NND_CTRL);
+ l &= ~(1 << 8);
+ nand_write_reg(NND_CTRL, l);
+ break;
+ default:
+ BUG();
+ }
+}
+
+static void nand_dma_cb(int lch, u16 ch_status, void *data)
+{
+ complete((struct completion *) data);
+}
+
+static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
+ unsigned int u32_count, int is_write)
+{
+ const int block_size = 16;
+ unsigned int block_count, len;
+ int r, dma_ch;
+ struct completion comp;
+ unsigned long fifo_reg;
+
+ r = omap_request_dma(OMAP_DMA_NAND, "NAND", nand_dma_cb, &comp, &dma_ch);
+ if (r < 0)
+ return r;
+ block_count = u32_count * 4 / block_size;
+ nand_write_reg(NND_FIFOCTRL, (block_size << 24) | block_count);
+ fifo_reg = NAND_BASE + NND_FIFO;
+ if (is_write) {
+ omap_set_dma_dest_params(dma_ch, OMAP_DMA_PORT_TIPB,
+ OMAP_DMA_AMODE_CONSTANT, fifo_reg);
+ omap_set_dma_src_params(dma_ch, OMAP_DMA_PORT_EMIFF,
+ OMAP_DMA_AMODE_POST_INC,
+ virt_to_phys(addr));
+// omap_set_dma_src_burst_mode(dma_ch, OMAP_DMA_DATA_BURST_4);
+ /* Set POSTWRITE bit */
+ nand_write_reg(NND_CTRL, nand_read_reg(NND_CTRL) | (1 << 16));
+ } else {
+ omap_set_dma_src_params(dma_ch, OMAP_DMA_PORT_TIPB,
+ OMAP_DMA_AMODE_CONSTANT, fifo_reg);
+ omap_set_dma_dest_params(dma_ch, OMAP_DMA_PORT_EMIFF,
+ OMAP_DMA_AMODE_POST_INC,
+ virt_to_phys(addr));
+// omap_set_dma_dest_burst_mode(dma_ch, OMAP_DMA_DATA_BURST_8);
+ /* Set PREFETCH bit */
+ nand_write_reg(NND_CTRL, nand_read_reg(NND_CTRL) | (1 << 17));
+ }
+ omap_set_dma_transfer_params(dma_ch, OMAP_DMA_DATA_TYPE_S32, block_size / 4,
+ block_count, OMAP_DMA_SYNC_FRAME);
+ init_completion(&comp);
+
+ len = u32_count << 2;
+ consistent_sync(addr, len, DMA_TO_DEVICE);
+ omap_start_dma(dma_ch);
+ wait_for_completion(&comp);
+ omap_free_dma(dma_ch);
+ if (!is_write)
+ consistent_sync(addr, len, DMA_FROM_DEVICE);
+
+ nand_write_reg(NND_CTRL, nand_read_reg(NND_CTRL) & ~((1 << 16) | (1 << 17)));
+ return 0;
+}
+
+static void fifo_read(u32 *out, unsigned int len)
+{
+ const int block_size = 16;
+ unsigned long status_reg, fifo_reg;
+ int c;
+
+ status_reg = omap_nand_base + NND_STATUS;
+ fifo_reg = omap_nand_base + NND_FIFO;
+ len = len * 4 / block_size;
+ nand_write_reg(NND_FIFOCTRL, (block_size << 24) | len);
+ nand_write_reg(NND_STATUS, 0x0f);
+ nand_write_reg(NND_CTRL, nand_read_reg(NND_CTRL) | (1 << 17));
+ c = block_size / 4;
+ while (len--) {
+ int i;
+
+ while ((__raw_readl(status_reg) & (1 << 2)) == 0);
+ __raw_writel(0x0f, status_reg);
+ for (i = 0; i < c; i++) {
+ u32 l = __raw_readl(fifo_reg);
+ *out++ = l;
+ }
+ }
+ nand_write_reg(NND_CTRL, nand_read_reg(NND_CTRL) & ~(1 << 17));
+ nand_write_reg(NND_STATUS, 0x0f);
+}
+
+static void omap_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ unsigned long access_reg;
+
+ if (likely(((unsigned long) buf & 3) == 0 && (len & 3) == 0)) {
+ int u32_count = len >> 2;
+ u32 *dest = (u32 *) buf;
+ /* If the transfer is big enough and the length divisible by
+ * 16, we try to use DMA transfer, or FIFO copy in case of
+ * DMA failure (e.g. all channels busy) */
+ if (u32_count > 64 && (u32_count & 3) == 0) {
+#if 1
+ if (omap_nand_dma_transfer(mtd, buf, u32_count, 0) == 0)
+ return;
+#endif
+ /* In case of an error, fallback to FIFO copy */
+ fifo_read((u32 *) buf, u32_count);
+ return;
+ }
+ access_reg = omap_nand_base + NND_ACCESS;
+ /* Small buffers we just read directly */
+ while (u32_count--)
+ *dest++ = __raw_readl(access_reg);
+ } else {
+ /* If we're not word-aligned, we use byte copy */
+ access_reg = omap_nand_base + NND_ACCESS;
+ while (len--)
+ *buf++ = __raw_readb(access_reg);
+ }
+}
+
+static void omap_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ if (likely(((unsigned long) buf & 3) == 0 && (len & 3) == 0)) {
+ const u32 *src = (const u32 *) buf;
+
+ len >>= 2;
+#if 0
+ /* If the transfer is big enough and length divisible by 16,
+ * we try to use DMA transfer. */
+ if (len > 256 / 4 && (len & 3) == 0) {
+ if (omap_nand_dma_transfer(mtd, (void *) buf, len, 1) == 0)
+ return;
+ /* In case of an error, fallback to CPU copy */
+ }
+#endif
+ while (len--)
+ nand_write_reg(NND_ACCESS, *src++);
+ } else {
+ while (len--)
+ nand_write_reg8(NND_ACCESS, *buf++);
+ }
+}
+
+static int omap_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ if (likely(((unsigned long) buf & 3) == 0 && (len & 3) == 0)) {
+ const u32 *dest = (const u32 *) buf;
+ len >>= 2;
+ while (len--)
+ if (*dest++ != nand_read_reg(NND_ACCESS))
+ return -EFAULT;
+ } else {
+ while (len--)
+ if (*buf++ != nand_read_reg8(NND_ACCESS))
+ return -EFAULT;
+ }
+ return 0;
+}
+
+static u_char omap_nand_read_byte(struct mtd_info *mtd)
+{
+ return nand_read_reg8(NND_ACCESS);
+}
+
+static void omap_nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+ nand_write_reg8(NND_ACCESS, byte);
+}
+
+static int omap_nand_dev_ready(struct mtd_info *mtd)
+{
+ u32 l;
+
+ l = nand_read_reg(NND_READY);
+ return l & 0x01;
+}
+
+static int nand_write_command(u8 cmd, u32 addr, int addr_valid)
+{
+ if (addr_valid) {
+ nand_write_reg(NND_ADDR_SRC, addr);
+ nand_write_reg8(NND_COMMAND, cmd);
+ } else {
+ nand_write_reg(NND_ADDR_SRC, 0);
+ nand_write_reg8(NND_COMMAND_SEC, cmd);
+ }
+ while (!omap_nand_dev_ready(NULL));
+ return 0;
+}
+
+/*
+ * Send command to NAND device
+ */
+static void omap_nand_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->oobblock) {
+ /* OOB area */
+ column -= mtd->oobblock;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ nand_write_command(readcmd, 0, 0);
+ }
+
+ switch (command) {
+ case NAND_CMD_RESET:
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_STATUS:
+ case NAND_CMD_ERASE2:
+ nand_write_command(command, 0, 0);
+ break;
+
+ case NAND_CMD_ERASE1:
+ nand_write_command(command, ((page_addr & 0xFFFFFF00) << 1) | (page_addr & 0XFF), 1);
+ break;
+
+ default:
+ nand_write_command(command, (page_addr << this->page_shift) | column, 1);
+ }
+}
+
+static void omap_nand_command_lp(struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ struct nand_chip *this = mtd->priv;
+
+ if (command == NAND_CMD_READOOB) {
+ column += mtd->oobblock;
+ command = NAND_CMD_READ0;
+ }
+ switch (command) {
+ case NAND_CMD_RESET:
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_STATUS:
+ case NAND_CMD_ERASE2:
+ nand_write_command(command, 0, 0);
+ break;
+ case NAND_CMD_ERASE1:
+ nand_write_command(command, page_addr << this->page_shift >> 11, 1);
+ break;
+ default:
+ nand_write_command(command, (page_addr << 16) | column, 1);
+ }
+ if (command == NAND_CMD_READ0)
+ nand_write_command(NAND_CMD_READSTART, 0, 0);
+}
+
+/*
+ * Generate non-inverted ECC bytes.
+ *
+ * Using noninverted ECC can be considered ugly since writing a blank
+ * page ie. padding will clear the ECC bytes. This is no problem as long
+ * nobody is trying to write data on the seemingly unused page.
+ *
+ * Reading an erased page will produce an ECC mismatch between
+ * generated and read ECC bytes that has to be dealt with separately.
+ */
+static int omap_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+ u32 l;
+ int reg;
+ int n;
+ struct nand_chip *this = mtd->priv;
+
+ if (this->eccmode == NAND_ECC_HW12_2048)
+ n = 4;
+ else
+ n = 1;
+ reg = NND_ECC_START;
+ while (n--) {
+ l = nand_read_reg(reg);
+ *ecc_code++ = l; // P128e, ..., P1e
+ *ecc_code++ = l >> 16; // P128o, ..., P1o
+ // P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e
+ *ecc_code++ = ((l >> 8) & 0x0f) | ((l >> 20) & 0xf0);
+ reg += 4;
+ }
+ return 0;
+}
+
+/*
+ * This function will generate true ECC value, which can be used
+ * when correcting data read from NAND flash memory core
+ */
+static void gen_true_ecc(u8 *ecc_buf)
+{
+ u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
+
+ ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp) );
+ ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
+ ecc_buf[2] = ~( P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | P1e(tmp) | P2048o(tmp) | P2048e(tmp));
+}
+
+/*
+ * This function compares two ECC's and indicates if there is an error.
+ * If the error can be corrected it will be corrected to the buffer
+ */
+static int omap_nand_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
+ u8 *ecc_data2, /* read from register */
+ u8 *page_data)
+{
+ uint i;
+ u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
+ u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
+ u8 ecc_bit[24];
+ u8 ecc_sum = 0;
+ u8 find_bit = 0;
+ uint find_byte = 0;
+ int isEccFF;
+
+ isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
+
+ gen_true_ecc(ecc_data1);
+ gen_true_ecc(ecc_data2);
+
+ for (i = 0; i <= 2; i++) {
+ *(ecc_data1 + i) = ~(*(ecc_data1 + i));
+ *(ecc_data2 + i) = ~(*(ecc_data2 + i));
+ }
+
+ for (i = 0; i < 8; i++) {
+ tmp0_bit[i] = *ecc_data1 % 2;
+ *ecc_data1 = *ecc_data1 / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ tmp1_bit[i] = *(ecc_data1 + 1) % 2;
+ *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ tmp2_bit[i] = *(ecc_data1 + 2) % 2;
+ *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ comp0_bit[i] = *ecc_data2 % 2;
+ *ecc_data2 = *ecc_data2 / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ comp1_bit[i] = *(ecc_data2 + 1) % 2;
+ *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
+ }
+
+ for (i = 0; i < 8; i++) {
+ comp2_bit[i] = *(ecc_data2 + 2) % 2;
+ *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
+ }
+
+ for (i = 0; i< 6; i++ )
+ ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
+
+ for (i = 0; i < 8; i++)
+ ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
+
+ for (i = 0; i < 8; i++)
+ ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
+
+ ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
+ ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
+
+ for (i = 0; i < 24; i++)
+ ecc_sum += ecc_bit[i];
+
+ switch (ecc_sum) {
+ case 0:
+ /* Not reached because this function is not called if
+ ECC values are equal */
+ return 0;
+
+ case 1:
+ /* Uncorrectable error */
+ DEBUG (MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
+ return -1;
+
+ case 12:
+ /* Correctable error */
+ find_byte = (ecc_bit[23] << 8) +
+ (ecc_bit[21] << 7) +
+ (ecc_bit[19] << 6) +
+ (ecc_bit[17] << 5) +
+ (ecc_bit[15] << 4) +
+ (ecc_bit[13] << 3) +
+ (ecc_bit[11] << 2) +
+ (ecc_bit[9] << 1) +
+ ecc_bit[7];
+
+ find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
+
+ DEBUG (MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at offset: %d, bit: %d\n", find_byte, find_bit);
+
+ page_data[find_byte] ^= (1 << find_bit);
+
+ return 0;
+ default:
+ if (isEccFF) {
+ if (ecc_data2[0] == 0 && ecc_data2[1] == 0 && ecc_data2[2] == 0)
+ return 0;
+ }
+ DEBUG (MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
+ return -1;
+ }
+}
+
+static int omap_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+ struct nand_chip *this;
+ int block_count = 0, i, r;
+
+ this = mtd->priv;
+ if (this->eccmode == NAND_ECC_HW12_2048)
+ block_count = 4;
+ else
+ block_count = 1;
+ for (i = 0; i < block_count; i++) {
+ if (memcmp(read_ecc, calc_ecc, 3) != 0) {
+ r = omap_nand_compare_ecc(read_ecc, calc_ecc, dat);
+ if (r < 0)
+ return r;
+ }
+ read_ecc += 3;
+ calc_ecc += 3;
+ dat += 512;
+ }
+ return 0;
+}
+
+static void omap_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ nand_write_reg(NND_RESET, 0x01);
+}
+
+static int omap_nand_scan_bbt(struct mtd_info *mtd)
+{
+ return 0;
+}
+
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+
+extern int mtdpart_setup(char *);
+
+static int __init add_dynamic_parts(struct mtd_info *mtd)
+{
+ static const char *part_parsers[] = { "cmdlinepart", NULL };
+ struct mtd_partition *parts;
+ const struct omap_flash_part_config *cfg;
+ char *part_str = NULL;
+ size_t part_str_len;
+ int c;
+
+ cfg = omap_get_var_config(OMAP_TAG_FLASH_PART, &part_str_len);
+ if (cfg != NULL) {
+ part_str = kmalloc(part_str_len + 1, GFP_KERNEL);
+ if (part_str == NULL)
+ return -ENOMEM;
+ memcpy(part_str, cfg->part_table, part_str_len);
+ part_str[part_str_len] = '\0';
+ mtdpart_setup(part_str);
+ }
+ c = parse_mtd_partitions(omap_mtd, part_parsers, &parts, 0);
+ if (part_str != NULL) {
+ mtdpart_setup(NULL);
+ kfree(part_str);
+ }
+ if (c <= 0)
+ return -1;
+
+ add_mtd_partitions(mtd, parts, c);
+
+ return 0;
+}
+
+#else
+
+static inline int add_dynamic_parts(struct mtd_info *mtd)
+{
+ return -1;
+}
+
+#endif
+
+static inline int calc_psc(int ns, int cycle_ps)
+{
+ return (ns * 1000 + (cycle_ps - 1)) / cycle_ps;
+}
+
+static void set_psc_regs(int psc_ns, int psc1_ns, int psc2_ns)
+{
+ int psc[3], i;
+ unsigned long rate, ps;
+
+ rate = clk_get_rate(omap_nand_clk);
+ ps = 1000000000 / (rate / 1000);
+ psc[0] = calc_psc(psc_ns, ps);
+ psc[1] = calc_psc(psc1_ns, ps);
+ psc[2] = calc_psc(psc2_ns, ps);
+ for (i = 0; i < 3; i++) {
+ if (psc[i] == 0)
+ psc[i] = 1;
+ else if (psc[i] > 256)
+ psc[i] = 256;
+ }
+ nand_write_reg(NND_PSC_CLK, psc[0] - 1);
+ nand_write_reg(NND_PSC1_CLK, psc[1] - 1);
+ nand_write_reg(NND_PSC2_CLK, psc[2] - 1);
+ printk(KERN_INFO "omap-hw-nand: using PSC values %d, %d, %d\n", psc[0], psc[1], psc[2]);
+}
+
+/*
+ * Main initialization routine
+ */
+static int __init omap_nand_init(void)
+{
+ struct nand_chip *this;
+ int err = 0;
+ u32 l;
+
+ omap_nand_clk = clk_get(NULL, "armper_ck");
+ BUG_ON(omap_nand_clk == NULL);
+ clk_use(omap_nand_clk);
+
+ l = nand_read_reg(NND_REVISION);
+ printk(KERN_INFO "omap-hw-nand: OMAP NAND Controller rev. %d.%d\n", l>>4, l & 0xf);
+
+ /* Reset the NAND Controller */
+ nand_write_reg(NND_SYSCFG, 0x02);
+ while ((nand_read_reg(NND_SYSSTATUS) & 0x01) == 0);
+
+ /* No Prefetch, no postwrite, write prot & enable pairs disabled,
+ addres counter set to send 4 byte addresses to flash,
+ A8 is set not to be sent to flash (erase addre needs formatting),
+ choose little endian, enable 512 byte ECC logic,
+ */
+ nand_write_reg(NND_CTRL, 0xFF01);
+
+ /* Allocate memory for MTD device structure and private data */
+ omap_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
+ if (!omap_mtd) {
+ printk(KERN_WARNING "omap-hw-nand: Unable to allocate OMAP NAND MTD device structure.\n");
+ err = -ENOMEM;
+ goto free_clock;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&omap_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) omap_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ omap_mtd->priv = this;
+ omap_mtd->name = "omap-nand";
+
+ /* Used from chip select and nand_command() */
+ this->read_byte = omap_nand_read_byte;
+ this->write_byte = omap_nand_write_byte;
+
+ this->select_chip = omap_nand_select_chip;
+ this->dev_ready = omap_nand_dev_ready;
+ this->chip_delay = 0;
+ this->eccmode = NAND_ECC_HW3_512;
+ this->cmdfunc = omap_nand_command;
+ this->write_buf = omap_nand_write_buf;
+ this->read_buf = omap_nand_read_buf;
+ this->verify_buf = omap_nand_verify_buf;
+ this->calculate_ecc = omap_nand_calculate_ecc;
+ this->correct_data = omap_nand_correct_data;
+ this->enable_hwecc = omap_nand_enable_hwecc;
+ this->scan_bbt = omap_nand_scan_bbt;
+
+ nand_write_reg(NND_PSC_CLK, 10);
+ /* Scan to find existance of the device */
+ if (nand_scan(omap_mtd, 1)) {
+ err = -ENXIO;
+ goto out_mtd;
+ }
+
+ set_psc_regs(25, 15, 35);
+ if (this->page_shift == 11) {
+ this->cmdfunc = omap_nand_command_lp;
+ l = nand_read_reg(NND_CTRL);
+ l |= 1 << 4; /* Set the A8 bit in CTRL reg */
+ nand_write_reg(NND_CTRL, l);
+ this->eccmode = NAND_ECC_HW12_2048;
+ this->eccsteps = 1;
+ this->eccsize = 2048;
+ this->eccbytes = 12;
+ omap_mtd->eccsize = 2048;
+ nand_write_reg(NND_ECC_SELECT, 6);
+ }
+
+ this->options |= NAND_NO_AUTOINCR;
+
+ err = add_dynamic_parts(omap_mtd);
+ if (err < 0) {
+ printk(KERN_ERR "omap-hw-nand: no partitions defined\n");
+ err = -ENODEV;
+ nand_release(omap_mtd);
+ goto out_mtd;
+ }
+ /* init completed */
+ return 0;
+out_mtd:
+ kfree(omap_mtd);
+free_clock:
+ clk_put(omap_nand_clk);
+ return err;
+}
+
+module_init(omap_nand_init);
+
+/*
+ * Clean up routine
+ */
+static void __exit omap_nand_cleanup (void)
+{
+ clk_unuse(omap_nand_clk);
+ clk_put(omap_nand_clk);
+ nand_release(omap_mtd);
+ kfree(omap_mtd);
+}
+
+module_exit(omap_nand_cleanup);
+
--- /dev/null
+/*
+ * drivers/mtd/nand/omap-nand-flash.c
+ *
+ * Copyright (c) 2004 Texas Instruments
+ * Jian Zhang <jzhang@ti.com>
+ * Copyright (c) 2004 David Brownell
+ *
+ * Derived from drivers/mtd/autcpu12.c
+ *
+ * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Overview:
+ * This is a device driver for the NAND flash device found on the
+ * TI H3/H2 boards. It supports 16-bit 32MiB Samsung k9f5616 chip.
+ *
+ */
+
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include <asm/arch/hardware.h>
+#include <asm/arch/gpio.h>
+#include <asm/arch/mux.h>
+#include <asm/arch/tc.h>
+#include <asm/sizes.h>
+#include <asm/mach-types.h>
+
+#define H3_NAND_RB_GPIO_PIN 10
+#define H2_NAND_RB_GPIO_PIN 62
+#define NETSTAR_NAND_RB_GPIO_PIN 1
+/*
+ * MTD structure for H3 board
+ */
+static struct mtd_info *omap_nand_mtd = NULL;
+
+static void __iomem *omap_nand_flash_base;
+
+/*
+ * Define partitions for flash devices
+ */
+
+#ifdef CONFIG_MTD_PARTITIONS
+static struct mtd_partition static_partition[] = {
+ { .name = "Booting Image",
+ .offset = 0,
+ .size = 64 * 1024,
+ .mask_flags = MTD_WRITEABLE /* force read-only */
+ },
+ { .name = "U-Boot",
+ .offset = MTDPART_OFS_APPEND,
+ .size = 256 * 1024,
+ .mask_flags = MTD_WRITEABLE /* force read-only */
+ },
+ { .name = "U-Boot Environment",
+ .offset = MTDPART_OFS_APPEND,
+ .size = 192 * 1024
+ },
+ { .name = "Kernel",
+ .offset = MTDPART_OFS_APPEND,
+ .size = 2 * SZ_1M
+ },
+ { .name = "File System",
+ .size = MTDPART_SIZ_FULL,
+ .offset = MTDPART_OFS_APPEND,
+ },
+};
+
+const char *part_probes[] = { "cmdlinepart", NULL, };
+
+#endif
+
+/* H2/H3 maps two address LSBs to CLE and ALE; MSBs make CS_2B */
+#define MASK_CLE 0x02
+#define MASK_ALE 0x04
+
+
+/*
+ * hardware specific access to control-lines
+*/
+static void omap_nand_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+ struct nand_chip *this = mtd->priv;
+ u32 IO_ADDR_W = (u32) this->IO_ADDR_W;
+
+ IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
+ switch(cmd){
+ case NAND_CTL_SETCLE: IO_ADDR_W |= MASK_CLE; break;
+ case NAND_CTL_SETALE: IO_ADDR_W |= MASK_ALE; break;
+ }
+ this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
+}
+
+/*
+ * chip busy R/B detection
+ */
+static int omap_nand_ready(struct mtd_info *mtd)
+{
+ if (machine_is_omap_h3())
+ return omap_get_gpio_datain(H3_NAND_RB_GPIO_PIN);
+ if (machine_is_omap_h2())
+ return omap_get_gpio_datain(H2_NAND_RB_GPIO_PIN);
+ if (machine_is_netstar())
+ return omap_get_gpio_datain(NETSTAR_NAND_RB_GPIO_PIN);
+}
+
+/* Scan to find existance of the device at omap_nand_flash_base.
+ This also allocates oob and data internal buffers */
+static int probe_nand_chip(void)
+{
+ struct nand_chip *this;
+
+ this = (struct nand_chip *) (&omap_nand_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ this->IO_ADDR_R = omap_nand_flash_base;
+ this->IO_ADDR_W = omap_nand_flash_base;
+ this->options = NAND_SAMSUNG_LP_OPTIONS;
+ this->hwcontrol = omap_nand_hwcontrol;
+ this->eccmode = NAND_ECC_SOFT;
+
+ /* try 16-bit chip first */
+ this->options |= NAND_BUSWIDTH_16;
+ if (nand_scan (omap_nand_mtd, 1)) {
+ if (machine_is_omap_h3())
+ return -ENXIO;
+
+ /* then try 8-bit chip for H2 */
+ memset((char *) this, 0, sizeof(struct nand_chip));
+ this->IO_ADDR_R = omap_nand_flash_base;
+ this->IO_ADDR_W = omap_nand_flash_base;
+ this->options = NAND_SAMSUNG_LP_OPTIONS;
+ this->hwcontrol = omap_nand_hwcontrol;
+ this->eccmode = NAND_ECC_SOFT;
+ if (nand_scan (omap_nand_mtd, 1)) {
+ return -ENXIO;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Main initialization routine
+ */
+int __init omap_nand_init (void)
+{
+ struct nand_chip *this;
+ struct mtd_partition *dynamic_partition = 0;
+ int err = 0;
+ int nandboot = 0;
+
+ if (!(machine_is_omap_h2() || machine_is_omap_h3() || machine_is_netstar()))
+ return -ENODEV;
+
+ /* Allocate memory for MTD device structure and private data */
+ omap_nand_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
+ GFP_KERNEL);
+ if (!omap_nand_mtd) {
+ printk (KERN_WARNING "Unable to allocate NAND MTD device structure.\n");
+ err = -ENOMEM;
+ goto out;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&omap_nand_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) omap_nand_mtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ omap_nand_mtd->priv = this;
+
+ if (machine_is_omap_h2()) {
+ /* FIXME on H2, R/B needs M7_1610_GPIO62 ... */
+ this->chip_delay = 15;
+ omap_cfg_reg(L3_1610_FLASH_CS2B_OE);
+ omap_cfg_reg(M8_1610_FLASH_CS2B_WE);
+ } else if (machine_is_omap_h3()) {
+ if (omap_request_gpio(H3_NAND_RB_GPIO_PIN) != 0) {
+ printk(KERN_ERR "NAND: Unable to get GPIO pin for R/B, use delay\n");
+ /* 15 us command delay time */
+ this->chip_delay = 15;
+ } else {
+ /* GPIO10 for input. it is in GPIO1 module */
+ omap_set_gpio_direction(H3_NAND_RB_GPIO_PIN, 1);
+
+ /* GPIO10 Func_MUX_CTRL reg bit 29:27, Configure V2 to mode1 as GPIO */
+ /* GPIO10 pullup/down register, Enable pullup on GPIO10 */
+ omap_cfg_reg(V2_1710_GPIO10);
+
+ this->dev_ready = omap_nand_ready;
+ }
+ } else if (machine_is_netstar()) {
+ if (omap_request_gpio(NETSTAR_NAND_RB_GPIO_PIN) != 0) {
+ printk(KERN_ERR "NAND: Unable to get GPIO pin for R/B, use delay\n");
+ /* 15 us command delay time */
+ this->chip_delay = 15;
+ } else {
+ omap_set_gpio_direction(NETSTAR_NAND_RB_GPIO_PIN, 1);
+ this->dev_ready = omap_nand_ready;
+ }
+ }
+
+ /* try the first address */
+ omap_nand_flash_base = ioremap(OMAP_NAND_FLASH_START1, SZ_4K);
+ if (probe_nand_chip()){
+ nandboot = 1;
+ /* try the second address */
+ iounmap(omap_nand_flash_base);
+ omap_nand_flash_base = ioremap(OMAP_NAND_FLASH_START2, SZ_4K);
+ if (probe_nand_chip()){
+ iounmap(omap_nand_flash_base);
+ err = -ENXIO;
+ goto out_mtd;
+ }
+ }
+
+ /* Register the partitions */
+ switch(omap_nand_mtd->size) {
+ case SZ_128M:
+ if (!(machine_is_netstar()))
+ goto out_unsupported;
+ /* fall through */
+ case SZ_32M:
+#ifdef CONFIG_MTD_PARTITIONS
+ err = parse_mtd_partitions(omap_nand_mtd, part_probes,
+ &dynamic_partition, 0);
+ if (err > 0)
+ err = add_mtd_partitions(omap_nand_mtd,
+ dynamic_partition, err);
+ else if (nandboot)
+ err = add_mtd_partitions(omap_nand_mtd,
+ static_partition,
+ ARRAY_SIZE(static_partition));
+ else
+#endif
+ err = add_mtd_device(omap_nand_mtd);
+ if (err)
+ goto out_buf;
+ break;
+out_unsupported:
+ default:
+ printk(KERN_WARNING "Unsupported NAND device\n");
+ err = -ENXIO;
+ goto out_buf;
+ }
+
+ goto out;
+
+out_buf:
+ nand_release (omap_nand_mtd);
+ if (this->dev_ready) {
+ if (machine_is_omap_h2())
+ omap_free_gpio(H2_NAND_RB_GPIO_PIN);
+ else if (machine_is_omap_h3())
+ omap_free_gpio(H3_NAND_RB_GPIO_PIN);
+ else if (machine_is_netstar())
+ omap_free_gpio(NETSTAR_NAND_RB_GPIO_PIN);
+ }
+ iounmap(omap_nand_flash_base);
+
+out_mtd:
+ kfree (omap_nand_mtd);
+out:
+ return err;
+}
+
+module_init(omap_nand_init);
+
+/*
+ * Clean up routine
+ */
+static void __exit omap_nand_cleanup (void)
+{
+ struct nand_chip *this = omap_nand_mtd->priv;
+ if (this->dev_ready) {
+ if (machine_is_omap_h2())
+ omap_free_gpio(H2_NAND_RB_GPIO_PIN);
+ else if (machine_is_omap_h3())
+ omap_free_gpio(H3_NAND_RB_GPIO_PIN);
+ else if (machine_is_netstar())
+ omap_free_gpio(NETSTAR_NAND_RB_GPIO_PIN);
+ }
+
+ /* nand_release frees MTD partitions, MTD structure
+ and nand internal buffers*/
+ nand_release (omap_nand_mtd);
+ kfree (omap_nand_mtd);
+
+ iounmap(omap_nand_flash_base);
+}
+
+module_exit(omap_nand_cleanup);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jian Zhang <jzhang@ti.com>");
+MODULE_DESCRIPTION("Glue layer for NAND flash on H2/H3 boards");