]> pilppa.com Git - linux-2.6-omap-h63xx.git/commit
x86: alternatives : fix LOCK_PREFIX race with preemptible kernel and CPU hotplug
authorMathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Thu, 14 Aug 2008 20:58:15 +0000 (16:58 -0400)
committerH. Peter Anvin <hpa@zytor.com>
Fri, 15 Aug 2008 19:46:28 +0000 (12:46 -0700)
commitf88f07e0f0fd6376e081b10930d272a08fbf082f
tree65344da969981de464dd903e9cb326c0ae6dbed0
parentb635acec48bcaa9183fcbf4e3955616b0d4119b5
x86: alternatives : fix LOCK_PREFIX race with preemptible kernel and CPU hotplug

If a kernel thread is preempted in single-cpu mode right after the NOP (nop
about to be turned into a lock prefix), then we CPU hotplug a CPU, and then the
thread is scheduled back again, a SMP-unsafe atomic operation will be used on
shared SMP variables, leading to corruption. No corruption would happen in the
reverse case : going from SMP to UP is ok because we split a bit instruction
into tiny pieces, which does not present this condition.

Changing the 0x90 (single-byte nop) currently used into a 0x3E DS segment
override prefix should fix this issue. Since the default of the atomic
instructions is to use the DS segment anyway, it should not affect the
behavior.

The exception to this are references that use ESP/RSP and EBP/RBP as
the base register (they will use the SS segment), however, in Linux
(a) DS == SS at all times, and (b) we do not distinguish between
segment violations reported as #SS as opposed to #GP, so there is no
need to disassemble the instruction to figure out the suitable segment.

This patch assumes that the 0x3E prefix will leave atomic operations as-is (thus
assuming they normally touch data in the DS segment). Since there seem to be no
obvious ill-use of other segment override prefixes for atomic operations, it
should be safe. It can be verified with a quick

grep -r LOCK_PREFIX include/asm-x86/
grep -A 1 -r LOCK_PREFIX arch/x86/

Taken from

This source :
AMD64 Architecture Programmer's Manual Volume 3: General-Purpose and System
Instructions
States
"Instructions that Reference a Non-Stack Segment—If an instruction encoding
references any base register other than rBP or rSP, or if an instruction
contains an immediate offset, the default segment is the data segment (DS).
These instructions can use the segment-override prefix to select one of the
non-default segments, as shown in Table 1-5."

Therefore, forcing the DS segment on the atomic operations, which already use
the DS segment, should not change.

This source :
http://wiki.osdev.org/X86_Instruction_Encoding
States
"In 64-bit the CS, SS, DS and ES segment overrides are ignored."

Confirmed by "AMD 64-Bit Technology" A.7
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/x86-64_overview.pdf

"In 64-bit mode, the DS, ES, SS and CS segment-override prefixes have no effect.
These four prefixes are no longer treated as segment-override prefixes in the
context of multipleprefix rules. Instead, they are treated as null prefixes."

This patch applies to 2.6.27-rc2, but would also have to be applied to earlier
kernels (2.6.26, 2.6.25, ...).

Performance impact of the fix : tests done on "xaddq" and "xaddl" shows it
actually improves performances on Intel Xeon, AMD64, Pentium M. It does not
change the performance on Pentium II, Pentium 3 and Pentium 4.

Xeon E5405 2.0GHz :
NR_TESTS                                    10000000
test empty cycles :                        162207948
test test 1-byte nop xadd cycles :         170755422
test test DS override prefix xadd cycles : 170000118 *
test test LOCK xadd cycles :               472012134

AMD64 2.0GHz :
NR_TESTS                                    10000000
test empty cycles :                        146674549
test test 1-byte nop xadd cycles :         150273860
test test DS override prefix xadd cycles : 149982382 *
test test LOCK xadd cycles :               270000690

Pentium 4 3.0GHz
NR_TESTS                                    10000000
test empty cycles :                        290001195
test test 1-byte nop xadd cycles :         310000560
test test DS override prefix xadd cycles : 310000575 *
test test LOCK xadd cycles :              1050103740

Pentium M 2.0GHz
NR_TESTS 10000000
test empty cycles :                        180000523
test test 1-byte nop xadd cycles :         320000345
test test DS override prefix xadd cycles : 310000374 *
test test LOCK xadd cycles :               480000357

Pentium 3 550MHz
NR_TESTS                                    10000000
test empty cycles :                        510000231
test test 1-byte nop xadd cycles :         620000128
test test DS override prefix xadd cycles : 620000110 *
test test LOCK xadd cycles :               800000088

Pentium II 350MHz
NR_TESTS                                    10000000
test empty cycles :                        200833494
test test 1-byte nop xadd cycles :         340000130
test test DS override prefix xadd cycles : 340000126 *
test test LOCK xadd cycles :               530000078

Speed test modules can be found at
http://ltt.polymtl.ca/svn/trunk/tests/kernel/test-prefix-speed-32.c
http://ltt.polymtl.ca/svn/trunk/tests/kernel/test-prefix-speed.c

Macro-benchmarks

2.0GHz E5405 Core 2 dual Quad-Core Xeon

Summary

* replace smp lock prefixes with DS segment selector prefixes
                  no lock prefix (s)   with lock prefix (s)    Speedup
make -j1 kernel/      33.94 +/- 0.07         34.91 +/- 0.27      2.8 %
hackbench 50           2.99 +/- 0.01          3.74 +/- 0.01     25.1 %

* replace smp lock prefixes with 0x90 nops
                  no lock prefix (s)   with lock prefix (s)    Speedup
make -j1 kernel/      34.16 +/- 0.32         34.91 +/- 0.27      2.2 %
hackbench 50           3.00 +/- 0.01          3.74 +/- 0.01     24.7 %

Detail :

1 CPU, replace smp lock prefixes with DS segment selector prefixes

make -j1 kernel/

real 0m34.067s
user 0m30.630s
sys 0m2.980s

real 0m33.867s
user 0m30.582s
sys 0m3.024s

real 0m33.939s
user 0m30.738s
sys 0m2.876s

real 0m33.913s
user 0m30.806s
sys 0m2.808s

avg : 33.94s
std. dev. : 0.07s

hackbench 50

Time: 2.978
Time: 2.982
Time: 3.010
Time: 2.984
Time: 2.982

avg : 2.99
std. dev. : 0.01

1 CPU, noreplace-smp

make -j1 kernel/

real 0m35.326s
user 0m30.630s
sys 0m3.260s

real 0m34.325s
user 0m30.802s
sys 0m3.084s

real 0m35.568s
user 0m30.722s
sys 0m3.168s

real 0m34.435s
user 0m30.886s
sys 0m2.996s

avg.: 34.91s
std. dev. : 0.27s

hackbench 50

Time: 3.733
Time: 3.750
Time: 3.761
Time: 3.737
Time: 3.741

avg : 3.74
std. dev. : 0.01

1 CPU, replace smp lock prefixes with 0x90 nops

make -j1 kernel/

real 0m34.139s
user 0m30.782s
sys 0m2.820s

real 0m34.010s
user 0m30.630s
sys 0m2.976s

real 0m34.777s
user 0m30.658s
sys 0m2.916s

real 0m33.924s
user 0m30.634s
sys 0m2.924s

real 0m33.962s
user 0m30.774s
sys 0m2.800s

real 0m34.141s
user 0m30.770s
sys 0m2.828s

avg : 34.16
std. dev. : 0.32

hackbench 50

Time: 2.999
Time: 2.994
Time: 3.004
Time: 2.991
Time: 2.988

avg : 3.00
std. dev. : 0.01

I did more runs (20 runs of each) to compare the nop case to the DS
prefix case. Results in seconds. They actually does not seems to show a
significant difference.

NOP

34.155
33.955
34.012
35.299
35.679
34.141
33.995
35.016
34.254
33.957
33.957
34.008
35.013
34.494
33.893
34.295
34.314
34.854
33.991
34.132

DS

34.080
34.304
34.374
35.095
34.291
34.135
33.940
34.208
35.276
34.288
33.861
33.898
34.610
34.709
33.851
34.256
35.161
34.283
33.865
35.078

Used http://www.graphpad.com/quickcalcs/ttest1.cfm?Format=C to do the
T-test (yeah, I'm lazy) :

 Group      Group One (DS prefix)       Group Two (nops)
 Mean                    34.37815               34.37070
 SD                       0.46108                0.51905
 SEM                      0.10310                0.11606
 N                             20                     20

P value and statistical significance:
  The two-tailed P value equals 0.9620
  By conventional criteria, this difference is considered to be not statistically significant.

Confidence interval:
  The mean of Group One minus Group Two equals 0.00745
  95% confidence interval of this difference: From -0.30682 to 0.32172

Intermediate values used in calculations:
  t = 0.0480
  df = 38
  standard error of difference = 0.155

So, unless these calculus are completely bogus, the difference between the nop
and the DS case seems not to be statistically significant.

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Acked-by: H. Peter Anvin <hpa@zytor.com>
CC: Linus Torvalds <torvalds@linux-foundation.org>
CC: Jeremy Fitzhardinge <jeremy@goop.org>
CC: Roland McGrath <roland@redhat.com>
CC: Ingo Molnar <mingo@elte.hu>
Cc: Steven Rostedt <rostedt@goodmis.org>
CC: Steven Rostedt <srostedt@redhat.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: David Miller <davem@davemloft.net>
CC: Ulrich Drepper <drepper@redhat.com>
CC: Rusty Russell <rusty@rustcorp.com.au>
CC: Gregory Haskins <ghaskins@novell.com>
CC: Arnaldo Carvalho de Melo <acme@redhat.com>
CC: "Luis Claudio R. Goncalves" <lclaudio@uudg.org>
CC: Clark Williams <williams@redhat.com>
CC: Christoph Lameter <cl@linux-foundation.org>
CC: Andi Kleen <andi@firstfloor.org>
CC: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
arch/x86/kernel/alternative.c